/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#pragma once
/*
This is the main Sub class
*/
////////////////////////////////////////////////////////////////////////////////
// Header includes
////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
// Common dependencies
#include
#include
#include
#include
#include // interface and maths for accelerometer calibration
#include // ArduPilot Mega Vector/Matrix math Library
#include // ArduPilot Mega Declination Helper Library
// Application dependencies
#include // ArduPilot GPS library
#include // ArduPilot Mega Flash Memory Library
#include
#include // ArduPilot Mega Magnetometer Library
#include // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include
#include // Mission command library
#include // Attitude control library
#include // Position control library
#include // AP Motors library
#include // Filter library
#include // APM relay
#include // Camera/Antenna mount
#include // needed for AHRS build
#include // inertial navigation library
#include // Waypoint navigation library
#include
#include // circle navigation library
#include // main loop scheduler
#include // loop perf monitoring
#include // Battery monitor library
#include
#include // Joystick/gamepad button function assignment
#include // Leak detector
#include
#include
// Local modules
#include "defines.h"
#include "config.h"
#include "GCS_Mavlink.h"
#include "RC_Channel.h" // RC Channel Library
#include "Parameters.h"
#include "AP_Arming_Sub.h"
#include "GCS_Sub.h"
#include "mode.h"
#include "script_button.h"
#include // Optical Flow library
// libraries which are dependent on #defines in defines.h and/or config.h
#if RCMAP_ENABLED == ENABLED
#include // RC input mapping library
#endif
#include
#if AP_RPM_ENABLED
#include
#endif
#if AVOIDANCE_ENABLED == ENABLED
#include // Stop at fence library
#endif
#include // Photo or video camera
#if AP_SCRIPTING_ENABLED
#include
#endif
class Sub : public AP_Vehicle {
public:
friend class GCS_MAVLINK_Sub;
friend class GCS_Sub;
friend class Parameters;
friend class ParametersG2;
friend class AP_Arming_Sub;
friend class RC_Channels_Sub;
friend class Mode;
friend class ModeManual;
friend class ModeStabilize;
friend class ModeAcro;
friend class ModeAlthold;
friend class ModeSurftrak;
friend class ModeGuided;
friend class ModePoshold;
friend class ModeAuto;
friend class ModeCircle;
friend class ModeSurface;
friend class ModeMotordetect;
Sub(void);
protected:
bool should_zero_rc_outputs_on_reboot() const override { return true; }
private:
// key aircraft parameters passed to multiple libraries
AP_MultiCopter aparm;
// Global parameters are all contained within the 'g' class.
Parameters g;
ParametersG2 g2;
// primary input control channels
RC_Channel *channel_roll;
RC_Channel *channel_pitch;
RC_Channel *channel_throttle;
RC_Channel *channel_yaw;
RC_Channel *channel_forward;
RC_Channel *channel_lateral;
AP_LeakDetector leak_detector;
struct {
bool enabled:1;
bool alt_healthy:1; // true if we can trust the altitude from the rangefinder
int16_t alt_cm; // tilt compensated altitude (in cm) from rangefinder
int16_t min_cm; // min rangefinder distance (in cm)
int16_t max_cm; // max rangefinder distance (in cm)
uint32_t last_healthy_ms;
float inertial_alt_cm; // inertial alt at time of last rangefinder sample
float rangefinder_terrain_offset_cm; // terrain height above EKF origin
LowPassFilterFloat alt_cm_filt; // altitude filter
} rangefinder_state = { false, false, 0, 0, 0, 0, 0, 0 };
#if AP_RPM_ENABLED
AP_RPM rpm_sensor;
#endif
// Mission library
AP_Mission mission{
FUNCTOR_BIND_MEMBER(&Sub::start_command, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&Sub::verify_command_callback, bool, const AP_Mission::Mission_Command &),
FUNCTOR_BIND_MEMBER(&Sub::exit_mission, void)};
// Optical flow sensor
#if AP_OPTICALFLOW_ENABLED
AP_OpticalFlow optflow;
#endif
// system time in milliseconds of last recorded yaw reset from ekf
uint32_t ekfYawReset_ms = 0;
// GCS selection
GCS_Sub _gcs; // avoid using this; use gcs()
GCS_Sub &gcs() { return _gcs; }
// User variables
#ifdef USERHOOK_VARIABLES
# include USERHOOK_VARIABLES
#endif
// Documentation of Globals:
union {
struct {
uint8_t pre_arm_check : 1; // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
uint8_t logging_started : 1; // true if logging has started
uint8_t compass_mot : 1; // true if we are currently performing compassmot calibration
uint8_t motor_test : 1; // true if we are currently performing the motors test
uint8_t initialised : 1; // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes
uint8_t gps_base_pos_set : 1; // true when the gps base position has been set (used for RTK gps only)
uint8_t at_bottom : 1; // true if we are at the bottom
uint8_t at_surface : 1; // true if we are at the surface
uint8_t depth_sensor_present: 1; // true if there is a depth sensor detected at boot
uint8_t unused1 : 1; // was compass_init_location; true when the compass's initial location has been set
};
uint32_t value;
} ap;
// This is the state of the flight control system
// There are multiple states defined such as STABILIZE, ACRO,
Mode::Number control_mode;
Mode::Number prev_control_mode;
#if RCMAP_ENABLED == ENABLED
RCMapper rcmap;
#endif
// Failsafe
struct {
uint32_t last_leak_warn_ms; // last time a leak warning was sent to gcs
uint32_t last_gcs_warn_ms;
uint32_t last_pilot_input_ms; // last time we received pilot input in the form of MANUAL_CONTROL or RC_CHANNELS_OVERRIDE messages
uint32_t terrain_first_failure_ms; // the first time terrain data access failed - used to calculate the duration of the failure
uint32_t terrain_last_failure_ms; // the most recent time terrain data access failed
uint32_t last_crash_warn_ms; // last time a crash warning was sent to gcs
uint32_t last_ekf_warn_ms; // last time an ekf warning was sent to gcs
uint8_t pilot_input : 1; // true if pilot input failsafe is active, handles things like joystick being disconnected during operation
uint8_t gcs : 1; // A status flag for the ground station failsafe
uint8_t ekf : 1; // true if ekf failsafe has occurred
uint8_t terrain : 1; // true if the missing terrain data failsafe has occurred
uint8_t leak : 1; // true if leak recently detected
uint8_t internal_pressure : 1; // true if internal pressure is over threshold
uint8_t internal_temperature : 1; // true if temperature is over threshold
uint8_t crash : 1; // true if we are crashed
uint8_t sensor_health : 1; // true if at least one sensor has triggered a failsafe (currently only used for depth in depth enabled modes)
} failsafe;
bool any_failsafe_triggered() const {
return (
failsafe.pilot_input
|| battery.has_failsafed()
|| failsafe.gcs
|| failsafe.ekf
|| failsafe.terrain
|| failsafe.leak
|| failsafe.internal_pressure
|| failsafe.internal_temperature
|| failsafe.crash
|| failsafe.sensor_health
);
}
// sensor health for logging
struct {
uint8_t depth : 1; // true if depth sensor is healthy
uint8_t compass : 1; // true if compass is healthy
} sensor_health;
// Baro sensor instance index of the external water pressure sensor
uint8_t depth_sensor_idx;
AP_Motors6DOF motors;
// Circle
bool circle_pilot_yaw_override; // true if pilot is overriding yaw
// Stores initial bearing when armed
int32_t initial_armed_bearing;
// Throttle variables
int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only
// Loiter control
uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds)
uint32_t loiter_time; // How long have we been loitering - The start time in millis
// Delay the next navigation command
uint32_t nav_delay_time_max_ms; // used for delaying the navigation commands
uint32_t nav_delay_time_start_ms;
// Battery Sensors
AP_BattMonitor battery{MASK_LOG_CURRENT,
FUNCTOR_BIND_MEMBER(&Sub::handle_battery_failsafe, void, const char*, const int8_t),
_failsafe_priorities};
AP_Arming_Sub arming;
// Altitude
// The cm/s we are moving up or down based on filtered data - Positive = UP
int16_t climb_rate;
// Turn counter
int32_t quarter_turn_count;
uint8_t last_turn_state;
// Input gain
float gain;
// Flag indicating if we are currently using input hold
bool input_hold_engaged;
// Flag indicating if we are currently controlling Pitch and Roll instead of forward/lateral
bool roll_pitch_flag = false;
// 3D Location vectors
// Current location of the Sub (altitude is relative to home)
Location current_loc;
// Navigation Yaw control
// auto flight mode's yaw mode
uint8_t auto_yaw_mode;
// Parameter to set yaw rate only
bool yaw_rate_only;
// Yaw will point at this location if auto_yaw_mode is set to AUTO_YAW_ROI
Vector3f roi_WP;
// bearing from current location to the yaw_look_at_WP
float yaw_look_at_WP_bearing;
float yaw_xtrack_correct_heading;
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
int32_t yaw_look_at_heading;
// Deg/s we should turn
int16_t yaw_look_at_heading_slew;
// heading when in yaw_look_ahead_bearing
float yaw_look_ahead_bearing;
// Delay Mission Scripting Command
int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
uint32_t condition_start;
// Inertial Navigation
AP_InertialNav inertial_nav;
AP_AHRS_View ahrs_view;
// Attitude, Position and Waypoint navigation objects
// To-Do: move inertial nav up or other navigation variables down here
AC_AttitudeControl_Sub attitude_control;
AC_PosControl pos_control;
AC_WPNav wp_nav;
AC_Loiter loiter_nav;
AC_Circle circle_nav;
// Camera
#if AP_CAMERA_ENABLED
AP_Camera camera{MASK_LOG_CAMERA};
#endif
// Camera/Antenna mount tracking and stabilisation stuff
#if HAL_MOUNT_ENABLED
AP_Mount camera_mount;
#endif
#if AVOIDANCE_ENABLED == ENABLED
AC_Avoid avoid;
#endif
// Rally library
#if HAL_RALLY_ENABLED
AP_Rally rally;
#endif
// terrain handling
#if AP_TERRAIN_AVAILABLE
AP_Terrain terrain;
#endif
// used to allow attitude and depth control without a position system
struct attitude_no_gps_struct {
uint32_t last_message_ms;
mavlink_set_attitude_target_t packet;
};
attitude_no_gps_struct set_attitude_target_no_gps {0};
// Top-level logic
// setup the var_info table
AP_Param param_loader;
uint32_t last_pilot_heading;
uint32_t last_pilot_yaw_input_ms;
uint32_t fs_terrain_recover_start_ms;
static const AP_Scheduler::Task scheduler_tasks[];
static const AP_Param::Info var_info[];
static const struct LogStructure log_structure[];
void run_rate_controller();
void fifty_hz_loop();
void update_batt_compass(void);
void ten_hz_logging_loop();
void twentyfive_hz_logging();
void three_hz_loop();
void one_hz_loop();
void update_turn_counter();
void read_AHRS(void);
void update_altitude();
float get_smoothing_gain();
void get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max);
float get_pilot_desired_yaw_rate(int16_t stick_angle) const;
void check_ekf_yaw_reset();
float get_roi_yaw();
float get_look_ahead_yaw();
float get_pilot_desired_climb_rate(float throttle_control);
void rotate_body_frame_to_NE(float &x, float &y);
#if HAL_LOGGING_ENABLED
// methods for AP_Vehicle:
const AP_Int32 &get_log_bitmask() override { return g.log_bitmask; }
const struct LogStructure *get_log_structures() const override {
return log_structure;
}
uint8_t get_num_log_structures() const override;
void Log_Write_Control_Tuning();
void Log_Write_Attitude();
void Log_Write_Data(LogDataID id, int32_t value);
void Log_Write_Data(LogDataID id, uint32_t value);
void Log_Write_Data(LogDataID id, int16_t value);
void Log_Write_Data(LogDataID id, uint16_t value);
void Log_Write_Data(LogDataID id, float value);
void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target);
void Log_Write_Vehicle_Startup_Messages();
#endif
void load_parameters(void) override;
void userhook_init();
void userhook_FastLoop();
void userhook_50Hz();
void userhook_MediumLoop();
void userhook_SlowLoop();
void userhook_SuperSlowLoop();
void update_home_from_EKF();
void set_home_to_current_location_inflight();
bool set_home_to_current_location(bool lock) override WARN_IF_UNUSED;
bool set_home(const Location& loc, bool lock) override WARN_IF_UNUSED;
float get_alt_rel() const WARN_IF_UNUSED;
float get_alt_msl() const WARN_IF_UNUSED;
void exit_mission();
bool verify_loiter_unlimited();
bool verify_loiter_time();
bool verify_wait_delay();
bool verify_within_distance();
bool verify_yaw();
void failsafe_sensors_check(void);
void failsafe_crash_check();
void failsafe_ekf_check(void);
void handle_battery_failsafe(const char* type_str, const int8_t action);
void failsafe_gcs_check();
void failsafe_pilot_input_check(void);
void set_neutral_controls(void);
void failsafe_terrain_check();
void failsafe_terrain_set_status(bool data_ok);
void failsafe_terrain_on_event();
void mainloop_failsafe_enable();
void mainloop_failsafe_disable();
void fence_check();
bool set_mode(Mode::Number mode, ModeReason reason);
bool set_mode(const uint8_t new_mode, const ModeReason reason) override;
uint8_t get_mode() const override { return (uint8_t)control_mode; }
void update_flight_mode();
void exit_mode(Mode::Number old_control_mode, Mode::Number new_control_mode);
void notify_flight_mode();
void read_inertia();
void update_surface_and_bottom_detector();
void set_surfaced(bool at_surface);
void set_bottomed(bool at_bottom);
void motors_output();
void init_rc_in();
void init_rc_out();
void enable_motor_output();
void init_joystick();
void transform_manual_control_to_rc_override(int16_t x, int16_t y, int16_t z, int16_t r, uint16_t buttons, uint16_t buttons2, uint8_t enabled_extensions,
int16_t s,
int16_t t,
int16_t aux1,
int16_t aux2,
int16_t aux3,
int16_t aux4,
int16_t aux5,
int16_t aux6);
void handle_jsbutton_press(uint8_t button,bool shift=false,bool held=false);
void handle_jsbutton_release(uint8_t button, bool shift);
JSButton* get_button(uint8_t index);
void default_js_buttons(void);
void clear_input_hold();
void read_barometer(void);
void init_rangefinder(void);
void read_rangefinder(void);
void terrain_update();
void terrain_logging();
void init_ardupilot() override;
void get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit) override;
void startup_INS_ground();
bool position_ok();
bool ekf_position_ok();
bool optflow_position_ok();
bool should_log(uint32_t mask);
bool start_command(const AP_Mission::Mission_Command& cmd);
bool verify_command(const AP_Mission::Mission_Command& cmd);
bool verify_command_callback(const AP_Mission::Mission_Command& cmd);
bool do_guided(const AP_Mission::Mission_Command& cmd);
void do_nav_wp(const AP_Mission::Mission_Command& cmd);
void do_surface(const AP_Mission::Mission_Command& cmd);
void do_RTL(void);
void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd);
void do_circle(const AP_Mission::Mission_Command& cmd);
void do_loiter_time(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
void do_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
void do_guided_limits(const AP_Mission::Mission_Command& cmd);
#endif
void do_nav_delay(const AP_Mission::Mission_Command& cmd);
void do_wait_delay(const AP_Mission::Mission_Command& cmd);
void do_within_distance(const AP_Mission::Mission_Command& cmd);
void do_yaw(const AP_Mission::Mission_Command& cmd);
void do_change_speed(const AP_Mission::Mission_Command& cmd);
void do_set_home(const AP_Mission::Mission_Command& cmd);
void do_roi(const AP_Mission::Mission_Command& cmd);
void do_mount_control(const AP_Mission::Mission_Command& cmd);
bool verify_nav_wp(const AP_Mission::Mission_Command& cmd);
bool verify_surface(const AP_Mission::Mission_Command& cmd);
bool verify_RTL(void);
bool verify_circle(const AP_Mission::Mission_Command& cmd);
#if NAV_GUIDED == ENABLED
bool verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd);
#endif
bool verify_nav_delay(const AP_Mission::Mission_Command& cmd);
void log_init(void);
void failsafe_leak_check();
void failsafe_internal_pressure_check();
void failsafe_internal_temperature_check();
void failsafe_terrain_act(void);
void translate_wpnav_rp(float &lateral_out, float &forward_out);
void translate_circle_nav_rp(float &lateral_out, float &forward_out);
void translate_pos_control_rp(float &lateral_out, float &forward_out);
void stats_update();
uint16_t get_pilot_speed_dn() const;
void convert_old_parameters(void);
bool handle_do_motor_test(mavlink_command_int_t command);
bool init_motor_test();
bool verify_motor_test();
uint32_t last_do_motor_test_fail_ms = 0;
uint32_t last_do_motor_test_ms = 0;
bool control_check_barometer();
// vehicle specific waypoint info helpers
bool get_wp_distance_m(float &distance) const override;
bool get_wp_bearing_deg(float &bearing) const override;
bool get_wp_crosstrack_error_m(float &xtrack_error) const override;
enum Failsafe_Action {
Failsafe_Action_None = 0,
Failsafe_Action_Warn = 1,
Failsafe_Action_Disarm = 2,
Failsafe_Action_Surface = 3
};
static constexpr int8_t _failsafe_priorities[] = {
Failsafe_Action_Disarm,
Failsafe_Action_Surface,
Failsafe_Action_Warn,
Failsafe_Action_None,
-1 // the priority list must end with a sentinel of -1
};
static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1,
"_failsafe_priorities is missing the sentinel");
Mode *mode_from_mode_num(const Mode::Number num);
void exit_mode(Mode *&old_flightmode, Mode *&new_flightmode);
Mode *flightmode;
ModeManual mode_manual;
ModeStabilize mode_stabilize;
ModeAcro mode_acro;
ModeAlthold mode_althold;
ModeAuto mode_auto;
ModeGuided mode_guided;
ModePoshold mode_poshold;
ModeCircle mode_circle;
ModeSurface mode_surface;
ModeMotordetect mode_motordetect;
ModeSurftrak mode_surftrak;
// Auto
AutoSubMode auto_mode; // controls which auto controller is run
GuidedSubMode guided_mode;
#if AP_SCRIPTING_ENABLED
ScriptButton script_buttons[4];
#endif // AP_SCRIPTING_ENABLED
public:
void mainloop_failsafe_check();
bool rangefinder_alt_ok() const WARN_IF_UNUSED;
static Sub *_singleton;
static Sub *get_singleton() {
return _singleton;
}
#if AP_SCRIPTING_ENABLED
// For Lua scripting, so index is 1..4, not 0..3
bool is_button_pressed(uint8_t index);
// For Lua scripting, so index is 1..4, not 0..3
uint8_t get_and_clear_button_count(uint8_t index);
#if AP_RANGEFINDER_ENABLED
float get_rangefinder_target_cm() const WARN_IF_UNUSED { return mode_surftrak.get_rangefinder_target_cm(); }
bool set_rangefinder_target_cm(float new_target_cm) { return mode_surftrak.set_rangefinder_target_cm(new_target_cm); }
#endif // AP_RANGEFINDER_ENABLED
#endif // AP_SCRIPTING_ENABLED
};
extern const AP_HAL::HAL& hal;
extern Sub sub;