#include #include "AP_OpticalFlow.h" #if AP_OPTICALFLOW_ENABLED #include "AP_OpticalFlow_Onboard.h" #include "AP_OpticalFlow_SITL.h" #include "AP_OpticalFlow_Pixart.h" #include "AP_OpticalFlow_PX4Flow.h" #include "AP_OpticalFlow_CXOF.h" #include "AP_OpticalFlow_MAV.h" #include "AP_OpticalFlow_HereFlow.h" #include "AP_OpticalFlow_MSP.h" #include "AP_OpticalFlow_UPFLOW.h" #include #include #include extern const AP_HAL::HAL& hal; #ifndef OPTICAL_FLOW_TYPE_DEFAULT #define OPTICAL_FLOW_TYPE_DEFAULT Type::NONE #endif const AP_Param::GroupInfo AP_OpticalFlow::var_info[] = { // @Param: _TYPE // @DisplayName: Optical flow sensor type // @Description: Optical flow sensor type // @SortValues: AlphabeticalZeroAtTop // @Values: 0:None, 1:PX4Flow, 2:Pixart, 3:Bebop, 4:CXOF, 5:MAVLink, 6:DroneCAN, 7:MSP, 8:UPFLOW // @User: Standard // @RebootRequired: True AP_GROUPINFO_FLAGS("_TYPE", 0, AP_OpticalFlow, _type, (float)OPTICAL_FLOW_TYPE_DEFAULT, AP_PARAM_FLAG_ENABLE), // @Param: _FXSCALER // @DisplayName: X axis optical flow scale factor correction // @Description: This sets the parts per thousand scale factor correction applied to the flow sensor X axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the X axis optical flow reading by 0.1%. Negative values reduce the scale factor. // @Range: -800 +800 // @Increment: 1 // @User: Standard AP_GROUPINFO("_FXSCALER", 1, AP_OpticalFlow, _flowScalerX, 0), // @Param: _FYSCALER // @DisplayName: Y axis optical flow scale factor correction // @Description: This sets the parts per thousand scale factor correction applied to the flow sensor Y axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the Y axis optical flow reading by 0.1%. Negative values reduce the scale factor. // @Range: -800 +800 // @Increment: 1 // @User: Standard AP_GROUPINFO("_FYSCALER", 2, AP_OpticalFlow, _flowScalerY, 0), // @Param: _ORIENT_YAW // @DisplayName: Flow sensor yaw alignment // @Description: Specifies the number of centi-degrees that the flow sensor is yawed relative to the vehicle. A sensor with its X-axis pointing to the right of the vehicle X axis has a positive yaw angle. // @Units: cdeg // @Range: -17999 +18000 // @Increment: 10 // @User: Standard AP_GROUPINFO("_ORIENT_YAW", 3, AP_OpticalFlow, _yawAngle_cd, 0), // @Param: _POS_X // @DisplayName: X position offset // @Description: X position of the optical flow sensor focal point in body frame. Positive X is forward of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced // @Param: _POS_Y // @DisplayName: Y position offset // @Description: Y position of the optical flow sensor focal point in body frame. Positive Y is to the right of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced // @Param: _POS_Z // @DisplayName: Z position offset // @Description: Z position of the optical flow sensor focal point in body frame. Positive Z is down from the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced AP_GROUPINFO("_POS", 4, AP_OpticalFlow, _pos_offset, 0.0f), // @Param: _ADDR // @DisplayName: Address on the bus // @Description: This is used to select between multiple possible I2C addresses for some sensor types. For PX4Flow you can choose 0 to 7 for the 8 possible addresses on the I2C bus. // @Range: 0 127 // @User: Advanced AP_GROUPINFO("_ADDR", 5, AP_OpticalFlow, _address, 0), // @Param: _HGT_OVR // @DisplayName: Height override of sensor above ground // @Description: This is used in rover vehicles, where the sensor is a fixed height above the ground // @Units: m // @Range: 0 2 // @Increment: 0.01 // @User: Advanced AP_GROUPINFO_FRAME("_HGT_OVR", 6, AP_OpticalFlow, _height_override, 0.0f, AP_PARAM_FRAME_ROVER), AP_GROUPEND }; // default constructor AP_OpticalFlow::AP_OpticalFlow() { _singleton = this; AP_Param::setup_object_defaults(this, var_info); } void AP_OpticalFlow::init(uint32_t log_bit) { _log_bit = log_bit; // return immediately if not enabled or backend already created if ((_type == Type::NONE) || (backend != nullptr)) { return; } switch ((Type)_type) { case Type::NONE: break; case Type::PX4FLOW: #if AP_OPTICALFLOW_PX4FLOW_ENABLED backend = AP_OpticalFlow_PX4Flow::detect(*this); #endif break; case Type::PIXART: #if AP_OPTICALFLOW_PIXART_ENABLED backend = AP_OpticalFlow_Pixart::detect("pixartflow", *this); if (backend == nullptr) { backend = AP_OpticalFlow_Pixart::detect("pixartPC15", *this); } #endif break; case Type::BEBOP: #if AP_OPTICALFLOW_ONBOARD_ENABLED backend = NEW_NOTHROW AP_OpticalFlow_Onboard(*this); #endif break; case Type::CXOF: #if AP_OPTICALFLOW_CXOF_ENABLED backend = AP_OpticalFlow_CXOF::detect(*this); #endif break; case Type::MAVLINK: #if AP_OPTICALFLOW_MAV_ENABLED backend = AP_OpticalFlow_MAV::detect(*this); #endif break; case Type::UAVCAN: #if AP_OPTICALFLOW_HEREFLOW_ENABLED backend = NEW_NOTHROW AP_OpticalFlow_HereFlow(*this); #endif break; case Type::MSP: #if HAL_MSP_OPTICALFLOW_ENABLED backend = AP_OpticalFlow_MSP::detect(*this); #endif break; case Type::UPFLOW: #if AP_OPTICALFLOW_UPFLOW_ENABLED backend = AP_OpticalFlow_UPFLOW::detect(*this); #endif break; case Type::SITL: #if AP_OPTICALFLOW_SITL_ENABLED backend = NEW_NOTHROW AP_OpticalFlow_SITL(*this); #endif break; } if (backend != nullptr) { backend->init(); } } void AP_OpticalFlow::update(void) { // exit immediately if not enabled if (!enabled()) { return; } if (backend != nullptr) { backend->update(); } // only healthy if the data is less than 0.5s old _flags.healthy = (AP_HAL::millis() - _last_update_ms < 500); #if AP_OPTICALFLOW_CALIBRATOR_ENABLED // update calibrator and save resulting scaling if (_calibrator != nullptr) { if (_calibrator->update()) { // apply new calibration values const Vector2f new_scaling = _calibrator->get_scalars(); const float flow_scalerx_as_multiplier = (1.0 + (_flowScalerX * 0.001)) * new_scaling.x; const float flow_scalery_as_multiplier = (1.0 + (_flowScalerY * 0.001)) * new_scaling.y; _flowScalerX.set_and_save_ifchanged((flow_scalerx_as_multiplier - 1.0) * 1000.0); _flowScalerY.set_and_save_ifchanged((flow_scalery_as_multiplier - 1.0) * 1000.0); _flowScalerX.notify(); _flowScalerY.notify(); GCS_SEND_TEXT(MAV_SEVERITY_INFO, "FlowCal: FLOW_FXSCALER=%d, FLOW_FYSCALER=%d", (int)_flowScalerX, (int)_flowScalerY); } } #endif } void AP_OpticalFlow::handle_msg(const mavlink_message_t &msg) { // exit immediately if not enabled if (!enabled()) { return; } if (backend != nullptr) { backend->handle_msg(msg); } } #if HAL_MSP_OPTICALFLOW_ENABLED void AP_OpticalFlow::handle_msp(const MSP::msp_opflow_data_message_t &pkt) { // exit immediately if not enabled if (!enabled()) { return; } if (backend != nullptr) { backend->handle_msp(pkt); } } #endif //HAL_MSP_OPTICALFLOW_ENABLED #if AP_OPTICALFLOW_CALIBRATOR_ENABLED // start calibration void AP_OpticalFlow::start_calibration() { if (_calibrator == nullptr) { _calibrator = NEW_NOTHROW AP_OpticalFlow_Calibrator(); if (_calibrator == nullptr) { GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "FlowCal: failed to start"); return; } } if (_calibrator != nullptr) { _calibrator->start(); } } // stop calibration void AP_OpticalFlow::stop_calibration() { if (_calibrator != nullptr) { _calibrator->stop(); } } #endif void AP_OpticalFlow::update_state(const OpticalFlow_state &state) { _state = state; _last_update_ms = AP_HAL::millis(); #if AP_AHRS_ENABLED // write to log and send to EKF if new data has arrived AP::ahrs().writeOptFlowMeas(quality(), _state.flowRate, _state.bodyRate, _last_update_ms, get_pos_offset(), get_height_override()); #endif #if HAL_LOGGING_ENABLED Log_Write_Optflow(); #endif } #if HAL_LOGGING_ENABLED void AP_OpticalFlow::Log_Write_Optflow() { AP_Logger *logger = AP_Logger::get_singleton(); if (logger == nullptr) { return; } if (_log_bit != (uint32_t)-1 && !logger->should_log(_log_bit)) { return; } struct log_Optflow pkt = { LOG_PACKET_HEADER_INIT(LOG_OPTFLOW_MSG), time_us : AP_HAL::micros64(), surface_quality : _state.surface_quality, flow_x : _state.flowRate.x, flow_y : _state.flowRate.y, body_x : _state.bodyRate.x, body_y : _state.bodyRate.y }; logger->WriteBlock(&pkt, sizeof(pkt)); } #endif // HAL_LOGGING_ENABLED // singleton instance AP_OpticalFlow *AP_OpticalFlow::_singleton; namespace AP { AP_OpticalFlow *opticalflow() { return AP_OpticalFlow::get_singleton(); } } #endif // AP_OPTICALFLOW_ENABLED