// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************************************************** * The init_ardupilot function processes everything we need for an in - air restart * We will determine later if we are actually on the ground and process a * ground start in that case. * *****************************************************************************/ #if CLI_ENABLED == ENABLED // Functions called from the top-level menu static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp static int8_t reboot_board(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of print_f that reads from flash memory static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) { cliSerial->printf_P(PSTR("Commands:\n" " logs log readback/setup mode\n" " setup setup mode\n" " test test mode\n" " reboot reboot to flight mode\n" "\n")); return(0); } // Command/function table for the top-level menu. static const struct Menu::command main_menu_commands[] PROGMEM = { // command function called // ======= =============== {"logs", process_logs}, {"setup", setup_mode}, {"test", test_mode}, {"reboot", reboot_board}, {"help", main_menu_help}, }; // Create the top-level menu object. MENU(main_menu, THISFIRMWARE, main_menu_commands); static int8_t reboot_board(uint8_t argc, const Menu::arg *argv) { reboot_apm(); return 0; } // the user wants the CLI. It never exits static void run_cli(AP_HAL::UARTDriver *port) { // disable the failsafe code in the CLI hal.scheduler->register_timer_failsafe(NULL,1); // disable the mavlink delay callback hal.scheduler->register_delay_callback(NULL, 5); cliSerial = port; Menu::set_port(port); port->set_blocking_writes(true); while (1) { main_menu.run(); } } #endif // CLI_ENABLED static void init_ardupilot() { #if USB_MUX_PIN > 0 // on the APM2 board we have a mux thet switches UART0 between // USB and the board header. If the right ArduPPM firmware is // installed we can detect if USB is connected using the // USB_MUX_PIN pinMode(USB_MUX_PIN, INPUT); usb_connected = !digitalRead(USB_MUX_PIN); if (!usb_connected) { // USB is not connected, this means UART0 may be a Xbee, with // its darned bricking problem. We can't write to it for at // least one second after powering up. Simplest solution for // now is to delay for 1 second. Something more elegant may be // added later delay(1000); } #endif // Console serial port // // The console port buffers are defined to be sufficiently large to support // the MAVLink protocol efficiently // hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE); // GPS serial port. // // standard gps running hal.uartB->begin(38400, 256, 16); cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE "\n\nFree RAM: %u\n"), memcheck_available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM // load_parameters(); // reset the uartA baud rate after parameter load hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD)); // keep a record of how many resets have happened. This can be // used to detect in-flight resets g.num_resets.set_and_save(g.num_resets+1); // init the GCS gcs0.init(hal.uartA); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb, 5); #if USB_MUX_PIN > 0 if (!usb_connected) { // we are not connected via USB, re-init UART0 with right // baud rate hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); } #else // we have a 2nd serial port for telemetry hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, SERIAL_BUFSIZE); gcs3.init(hal.uartC); #endif mavlink_system.sysid = g.sysid_this_mav; #if LOGGING_ENABLED == ENABLED DataFlash.Init(); if (!DataFlash.CardInserted()) { gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted")); g.log_bitmask.set(0); } else if (DataFlash.NeedErase()) { gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS")); do_erase_logs(); gcs0.reset_cli_timeout(); } if (g.log_bitmask != 0) { start_logging(); } #endif #if CONFIG_ADC == ENABLED adc.Init(); // APM ADC library initialization #endif barometer.init(); if (g.compass_enabled==true) { compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft if (!compass.init() || !compass.read()) { cliSerial->println_P(PSTR("Compass initialisation failed!")); g.compass_enabled = false; } else { ahrs.set_compass(&compass); } } // give AHRS the airspeed sensor ahrs.set_airspeed(&airspeed); #if APM_CONTROL == ENABLED // the axis controllers need access to the AHRS system g.rollController.set_ahrs(&ahrs); g.pitchController.set_ahrs(&ahrs); g.yawController.set_ahrs(&ahrs); #endif // Do GPS init g_gps = &g_gps_driver; // GPS Initialization g_gps->init(hal.uartB, GPS::GPS_ENGINE_AIRBORNE_4G); //mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id mavlink_system.type = MAV_TYPE_FIXED_WING; init_rc_in(); // sets up rc channels from radio init_rc_out(); // sets up the timer libs pinMode(C_LED_PIN, OUTPUT); // GPS status LED pinMode(A_LED_PIN, OUTPUT); // GPS status LED pinMode(B_LED_PIN, OUTPUT); // GPS status LED relay.init(); #if FENCE_TRIGGERED_PIN > 0 pinMode(FENCE_TRIGGERED_PIN, OUTPUT); digitalWrite(FENCE_TRIGGERED_PIN, LOW); #endif /* * setup the 'main loop is dead' check. Note that this relies on * the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check, 1000); const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n"); cliSerial->println_P(msg); #if USB_MUX_PIN == 0 hal.uartC->println_P(msg); #endif if (ENABLE_AIR_START == 1) { // Perform an air start and get back to flying gcs_send_text_P(SEVERITY_LOW,PSTR(" AIR START")); // Get necessary data from EEPROM //---------------- //read_EEPROM_airstart_critical(); ahrs.init(); ahrs.set_fly_forward(true); ins.init(AP_InertialSensor::WARM_START, ins_sample_rate, flash_leds); // This delay is important for the APM_RC library to work. // We need some time for the comm between the 328 and 1280 to be established. int old_pulse = 0; while (millis()<=1000 && (abs(old_pulse - hal.rcin->read(g.flight_mode_channel)) > 5 || hal.rcin->read(g.flight_mode_channel) == 1000 || hal.rcin->read(g.flight_mode_channel) == 1200)) { old_pulse = hal.rcin->read(g.flight_mode_channel); delay(25); } g_gps->update(); if (g.log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_AIRSTART_MSG); reload_commands_airstart(); // Get set to resume AUTO from where we left off }else { startup_ground(); if (g.log_bitmask & MASK_LOG_CMD) Log_Write_Startup(TYPE_GROUNDSTART_MSG); } // choose the nav controller set_nav_controller(); set_mode(MANUAL); // set the correct flight mode // --------------------------- reset_control_switch(); } //******************************************************************************** //This function does all the calibrations, etc. that we need during a ground start //******************************************************************************** static void startup_ground(void) { set_mode(INITIALISING); gcs_send_text_P(SEVERITY_LOW,PSTR(" GROUND START")); #if (GROUND_START_DELAY > 0) gcs_send_text_P(SEVERITY_LOW,PSTR(" With Delay")); delay(GROUND_START_DELAY * 1000); #endif // Makes the servos wiggle // step 1 = 1 wiggle // ----------------------- demo_servos(1); //INS ground start //------------------------ // startup_INS_ground(false); // read the radio to set trims // --------------------------- trim_radio(); // This was commented out as a HACK. Why? I don't find a problem. // Save the settings for in-air restart // ------------------------------------ //save_EEPROM_groundstart(); // initialize commands // ------------------- init_commands(); // Makes the servos wiggle - 3 times signals ready to fly // ----------------------- demo_servos(3); // reset last heartbeat time, so we don't trigger failsafe on slow // startup last_heartbeat_ms = millis(); // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we are // ready to fly hal.uartC->set_blocking_writes(false); if (gcs3.initialised) { hal.uartC->set_blocking_writes(false); } gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to FLY.")); } static void set_mode(enum FlightMode mode) { if(control_mode == mode) { // don't switch modes if we are already in the correct mode. return; } if(g.auto_trim > 0 && control_mode == MANUAL) trim_control_surfaces(); control_mode = mode; crash_timer = 0; switch(control_mode) { case INITIALISING: case MANUAL: case STABILIZE: case TRAINING: case FLY_BY_WIRE_A: break; case FLY_BY_WIRE_B: target_altitude_cm = current_loc.alt; break; case CIRCLE: // the altitude to circle at is taken from the current altitude next_WP.alt = current_loc.alt; break; case AUTO: prev_WP = current_loc; update_auto(); break; case RTL: prev_WP = current_loc; do_RTL(); break; case LOITER: do_loiter_at_location(); break; case GUIDED: set_guided_WP(); break; default: prev_WP = current_loc; do_RTL(); break; } // if in an auto-throttle mode, start with throttle suppressed for // safety. suppress_throttle() will unsupress it when appropriate if (control_mode == CIRCLE || control_mode >= FLY_BY_WIRE_B) { throttle_suppressed = true; } if (g.log_bitmask & MASK_LOG_MODE) Log_Write_Mode(control_mode); } static void check_long_failsafe() { uint32_t tnow = millis(); // only act on changes // ------------------- if(failsafe != FAILSAFE_LONG && failsafe != FAILSAFE_GCS) { if (rc_override_active && tnow - last_heartbeat_ms > FAILSAFE_LONG_TIME) { failsafe_long_on_event(FAILSAFE_LONG); } if(!rc_override_active && failsafe == FAILSAFE_SHORT && (tnow - ch3_failsafe_timer) > FAILSAFE_LONG_TIME) { failsafe_long_on_event(FAILSAFE_LONG); } if (g.gcs_heartbeat_fs_enabled && last_heartbeat_ms != 0 && (tnow - last_heartbeat_ms) > FAILSAFE_LONG_TIME) { failsafe_long_on_event(FAILSAFE_GCS); } } else { // We do not change state but allow for user to change mode if (failsafe == FAILSAFE_GCS && (tnow - last_heartbeat_ms) < FAILSAFE_SHORT_TIME) failsafe = FAILSAFE_NONE; if (failsafe == FAILSAFE_LONG && rc_override_active && (tnow - last_heartbeat_ms) < FAILSAFE_SHORT_TIME) failsafe = FAILSAFE_NONE; if (failsafe == FAILSAFE_LONG && !rc_override_active && !ch3_failsafe) failsafe = FAILSAFE_NONE; } } static void check_short_failsafe() { // only act on changes // ------------------- if(failsafe == FAILSAFE_NONE) { if(ch3_failsafe) { // The condition is checked and the flag ch3_failsafe is set in radio.pde failsafe_short_on_event(FAILSAFE_SHORT); } } if(failsafe == FAILSAFE_SHORT) { if(!ch3_failsafe) { failsafe_short_off_event(); } } } static void startup_INS_ground(bool force_accel_level) { #if HIL_MODE != HIL_MODE_DISABLED while (!barometer.healthy) { // the barometer becomes healthy when we get the first // HIL_STATE message gcs_send_text_P(SEVERITY_LOW, PSTR("Waiting for first HIL_STATE message")); delay(1000); } #endif gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC...")); mavlink_delay(500); // Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!! // ----------------------- demo_servos(2); gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move plane")); mavlink_delay(1000); ahrs.init(); ahrs.set_fly_forward(true); ins.init(AP_InertialSensor::COLD_START, ins_sample_rate, flash_leds); #if HIL_MODE == HIL_MODE_DISABLED if (force_accel_level || g.manual_level == 0) { // when MANUAL_LEVEL is set to 1 we don't do accelerometer // levelling on each boot, and instead rely on the user to do // it once via the ground station ins.init_accel(flash_leds); ahrs.set_trim(Vector3f(0, 0, 0)); } #endif ahrs.reset(); // read Baro pressure at ground //----------------------------- init_barometer(); if (airspeed.enabled()) { // initialize airspeed sensor // -------------------------- zero_airspeed(); } else { gcs_send_text_P(SEVERITY_LOW,PSTR("NO airspeed")); } digitalWrite(B_LED_PIN, LED_ON); // Set LED B high to indicate INS ready digitalWrite(A_LED_PIN, LED_OFF); digitalWrite(C_LED_PIN, LED_OFF); } static void update_GPS_light(void) { // GPS LED on if we have a fix or Blink GPS LED if we are receiving data // --------------------------------------------------------------------- switch (g_gps->status()) { case GPS::NO_FIX: case GPS::GPS_OK_FIX_2D: // check if we've blinked since the last gps update if (g_gps->valid_read) { g_gps->valid_read = false; GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock if (GPS_light) { digitalWrite(C_LED_PIN, LED_OFF); }else{ digitalWrite(C_LED_PIN, LED_ON); } } break; case GPS::GPS_OK_FIX_3D: digitalWrite(C_LED_PIN, LED_ON); //Turn LED C on when gps has valid fix AND home is set. break; default: digitalWrite(C_LED_PIN, LED_OFF); break; } } static void resetPerfData(void) { mainLoop_count = 0; G_Dt_max = 0; ahrs.renorm_range_count = 0; ahrs.renorm_blowup_count = 0; gps_fix_count = 0; pmTest1 = 0; perf_mon_timer = millis(); } /* * map from a 8 bit EEPROM baud rate to a real baud rate */ static uint32_t map_baudrate(int8_t rate, uint32_t default_baud) { switch (rate) { case 1: return 1200; case 2: return 2400; case 4: return 4800; case 9: return 9600; case 19: return 19200; case 38: return 38400; case 57: return 57600; case 111: return 111100; case 115: return 115200; } cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD")); return default_baud; } static void check_usb_mux(void) { #if USB_MUX_PIN > 0 bool usb_check = !digitalRead(USB_MUX_PIN); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; if (usb_connected) { hal.uartA->begin(SERIAL0_BAUD); } else { hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD)); } #endif } /* * called by gyro/accel init to flash LEDs so user * has some mesmerising lights to watch while waiting */ void flash_leds(bool on) { digitalWrite(A_LED_PIN, on ? LED_OFF : LED_ON); digitalWrite(C_LED_PIN, on ? LED_ON : LED_OFF); } /* * Read Vcc vs 1.1v internal reference */ uint16_t board_voltage(void) { return vcc_pin->read_latest(); } /* force a software reset of the APM */ static void reboot_apm(void) { hal.scheduler->reboot(); while (1); } static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode) { switch (mode) { case MANUAL: port->print_P(PSTR("Manual")); break; case CIRCLE: port->print_P(PSTR("Circle")); break; case STABILIZE: port->print_P(PSTR("Stabilize")); break; case TRAINING: port->print_P(PSTR("Training")); break; case FLY_BY_WIRE_A: port->print_P(PSTR("FBW_A")); break; case FLY_BY_WIRE_B: port->print_P(PSTR("FBW_B")); break; case AUTO: port->print_P(PSTR("AUTO")); break; case RTL: port->print_P(PSTR("RTL")); break; case LOITER: port->print_P(PSTR("Loiter")); break; default: port->printf_P(PSTR("Mode(%u)"), (unsigned)mode); break; } } static void print_comma(void) { cliSerial->print_P(PSTR(",")); } /* write to a servo */ static void servo_write(uint8_t ch, uint16_t pwm) { #if HIL_MODE != HIL_MODE_DISABLED if (!g.hil_servos) { extern RC_Channel *rc_ch[8]; if (ch < 8) { rc_ch[ch]->radio_out = pwm; } return; } #endif hal.rcout->enable_ch(ch); hal.rcout->write(ch, pwm); }