/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* AP_Compass_PX4.cpp - Arduino Library for PX4 magnetometer
*
*/
#include
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_Compass_PX4.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
extern const AP_HAL::HAL& hal;
// Public Methods //////////////////////////////////////////////////////////////
bool AP_Compass_PX4::init(void)
{
_mag_fd[0] = open(MAG_DEVICE_PATH, O_RDONLY);
_mag_fd[1] = open(MAG_DEVICE_PATH "1", O_RDONLY);
_mag_fd[2] = open(MAG_DEVICE_PATH "2", O_RDONLY);
_num_instances = 0;
for (uint8_t i=0; i= 0) {
_num_instances = i+1;
}
}
if (_num_instances == 0) {
hal.console->printf("Unable to open " MAG_DEVICE_PATH "\n");
return false;
}
for (uint8_t i=0; i<_num_instances; i++) {
// get device id
_dev_id[i] = ioctl(_mag_fd[i], DEVIOCGDEVICEID, 0);
// average over up to 20 samples
if (ioctl(_mag_fd[i], SENSORIOCSQUEUEDEPTH, 20) != 0) {
hal.console->printf("Failed to setup compass queue\n");
return false;
}
// remember if the compass is external
_is_external[i] = (ioctl(_mag_fd[i], MAGIOCGEXTERNAL, 0) > 0);
if (_is_external[i]) {
hal.console->printf("Using external compass[%u]\n", (unsigned)i);
}
_count[0] = 0;
_sum[i].zero();
_healthy[i] = false;
}
// give the driver a chance to run, and gather one sample
hal.scheduler->delay(40);
accumulate();
if (_count[0] == 0) {
hal.console->printf("Failed initial compass accumulate\n");
}
return true;
}
bool AP_Compass_PX4::read(void)
{
// try to accumulate one more sample, so we have the latest data
accumulate();
// consider the compass healthy if we got a reading in the last 0.2s
for (uint8_t i=0; i<_num_instances; i++) {
_healthy[i] = (hrt_absolute_time() - _last_timestamp[i] < 200000);
}
for (uint8_t i=0; i<_num_instances; i++) {
// avoid division by zero if we haven't received any mag reports
if (_count[i] == 0) continue;
_sum[i] /= _count[i];
_sum[i] *= 1000;
// apply default board orientation for this compass type. This is
// a noop on most boards
_sum[i].rotate(MAG_BOARD_ORIENTATION);
// override any user setting of COMPASS_EXTERNAL
_external.set(_is_external[0]);
if (_is_external[i]) {
// add user selectable orientation
_sum[i].rotate((enum Rotation)_orientation.get());
} else {
// add in board orientation from AHRS
_sum[i].rotate(_board_orientation);
}
_sum[i] += _offset[i].get();
// apply motor compensation
if (_motor_comp_type != AP_COMPASS_MOT_COMP_DISABLED && _thr_or_curr != 0.0f) {
_motor_offset[i] = _motor_compensation[i].get() * _thr_or_curr;
_sum[i] += _motor_offset[i];
} else {
_motor_offset[i].zero();
}
_field[i] = _sum[i];
_sum[i].zero();
_count[i] = 0;
}
last_update = _last_timestamp[_get_primary()];
return _healthy[_get_primary()];
}
void AP_Compass_PX4::accumulate(void)
{
struct mag_report mag_report;
for (uint8_t i=0; i<_num_instances; i++) {
while (::read(_mag_fd[i], &mag_report, sizeof(mag_report)) == sizeof(mag_report) &&
mag_report.timestamp != _last_timestamp[i]) {
_sum[i] += Vector3f(mag_report.x, mag_report.y, mag_report.z);
_count[i]++;
_last_timestamp[i] = mag_report.timestamp;
}
}
}
uint8_t AP_Compass_PX4::_get_primary(void) const
{
if (_primary < _num_instances && _healthy[_primary]) {
return _primary;
}
for (uint8_t i=0; i<_num_instances; i++) {
if (_healthy[i]) return i;
}
return 0;
}
#endif // CONFIG_HAL_BOARD