#include #include "OpticalFlow.h" #include "AP_OpticalFlow_Onboard.h" #include "AP_OpticalFlow_SITL.h" #include "AP_OpticalFlow_Pixart.h" #include "AP_OpticalFlow_PX4Flow.h" #include "AP_OpticalFlow_CXOF.h" #include "AP_OpticalFlow_MAV.h" #include "AP_OpticalFlow_HereFlow.h" #include "AP_OpticalFlow_MSP.h" #include extern const AP_HAL::HAL& hal; #ifndef OPTICAL_FLOW_TYPE_DEFAULT #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_CHIBIOS_SKYVIPER_F412 || defined(HAL_HAVE_PIXARTFLOW_SPI) #define OPTICAL_FLOW_TYPE_DEFAULT OpticalFlowType::PIXART #elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP #define OPTICAL_FLOW_TYPE_DEFAULT OpticalFlowType::BEBOP #else #define OPTICAL_FLOW_TYPE_DEFAULT OpticalFlowType::NONE #endif #endif const AP_Param::GroupInfo OpticalFlow::var_info[] = { // @Param: _TYPE // @DisplayName: Optical flow sensor type // @Description: Optical flow sensor type // @Values: 0:None, 1:PX4Flow, 2:Pixart, 3:Bebop, 4:CXOF, 5:MAVLink, 6:UAVCAN, 7:MSP // @User: Standard // @RebootRequired: True AP_GROUPINFO("_TYPE", 0, OpticalFlow, _type, (int8_t)OPTICAL_FLOW_TYPE_DEFAULT), // @Param: _FXSCALER // @DisplayName: X axis optical flow scale factor correction // @Description: This sets the parts per thousand scale factor correction applied to the flow sensor X axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the X axis optical flow reading by 0.1%. Negative values reduce the scale factor. // @Range: -200 +200 // @Increment: 1 // @User: Standard AP_GROUPINFO("_FXSCALER", 1, OpticalFlow, _flowScalerX, 0), // @Param: _FYSCALER // @DisplayName: Y axis optical flow scale factor correction // @Description: This sets the parts per thousand scale factor correction applied to the flow sensor Y axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the Y axis optical flow reading by 0.1%. Negative values reduce the scale factor. // @Range: -200 +200 // @Increment: 1 // @User: Standard AP_GROUPINFO("_FYSCALER", 2, OpticalFlow, _flowScalerY, 0), // @Param: _ORIENT_YAW // @DisplayName: Flow sensor yaw alignment // @Description: Specifies the number of centi-degrees that the flow sensor is yawed relative to the vehicle. A sensor with its X-axis pointing to the right of the vehicle X axis has a positive yaw angle. // @Units: cdeg // @Range: -18000 +18000 // @Increment: 1 // @User: Standard AP_GROUPINFO("_ORIENT_YAW", 3, OpticalFlow, _yawAngle_cd, 0), // @Param: _POS_X // @DisplayName: X position offset // @Description: X position of the optical flow sensor focal point in body frame. Positive X is forward of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced // @Param: _POS_Y // @DisplayName: Y position offset // @Description: Y position of the optical flow sensor focal point in body frame. Positive Y is to the right of the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced // @Param: _POS_Z // @DisplayName: Z position offset // @Description: Z position of the optical flow sensor focal point in body frame. Positive Z is down from the origin. // @Units: m // @Range: -5 5 // @Increment: 0.01 // @User: Advanced AP_GROUPINFO("_POS", 4, OpticalFlow, _pos_offset, 0.0f), // @Param: _ADDR // @DisplayName: Address on the bus // @Description: This is used to select between multiple possible I2C addresses for some sensor types. For PX4Flow you can choose 0 to 7 for the 8 possible addresses on the I2C bus. // @Range: 0 127 // @User: Advanced AP_GROUPINFO("_ADDR", 5, OpticalFlow, _address, 0), AP_GROUPEND }; // default constructor OpticalFlow::OpticalFlow() { _singleton = this; AP_Param::setup_object_defaults(this, var_info); } void OpticalFlow::init(uint32_t log_bit) { _log_bit = log_bit; // return immediately if not enabled or backend already created if ((_type == (int8_t)OpticalFlowType::NONE) || (backend != nullptr)) { return; } switch ((OpticalFlowType)_type.get()) { case OpticalFlowType::NONE: break; case OpticalFlowType::PX4FLOW: backend = AP_OpticalFlow_PX4Flow::detect(*this); break; case OpticalFlowType::PIXART: backend = AP_OpticalFlow_Pixart::detect("pixartflow", *this); if (backend == nullptr) { backend = AP_OpticalFlow_Pixart::detect("pixartPC15", *this); } break; case OpticalFlowType::BEBOP: #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP backend = new AP_OpticalFlow_Onboard(*this); #endif break; case OpticalFlowType::CXOF: backend = AP_OpticalFlow_CXOF::detect(*this); break; case OpticalFlowType::MAVLINK: backend = AP_OpticalFlow_MAV::detect(*this); break; case OpticalFlowType::UAVCAN: #if HAL_ENABLE_LIBUAVCAN_DRIVERS backend = new AP_OpticalFlow_HereFlow(*this); #endif break; case OpticalFlowType::MSP: #if HAL_MSP_OPTICALFLOW_ENABLED backend = AP_OpticalFlow_MSP::detect(*this); #endif break; case OpticalFlowType::SITL: #if CONFIG_HAL_BOARD == HAL_BOARD_SITL backend = new AP_OpticalFlow_SITL(*this); #endif break; } if (backend != nullptr) { backend->init(); } } void OpticalFlow::update(void) { // exit immediately if not enabled if (!enabled()) { return; } if (backend != nullptr) { backend->update(); } // only healthy if the data is less than 0.5s old _flags.healthy = (AP_HAL::millis() - _last_update_ms < 500); } void OpticalFlow::handle_msg(const mavlink_message_t &msg) { // exit immediately if not enabled if (!enabled()) { return; } if (backend != nullptr) { backend->handle_msg(msg); } } #if HAL_MSP_OPTICALFLOW_ENABLED void OpticalFlow::handle_msp(const MSP::msp_opflow_data_message_t &pkt) { // exit immediately if not enabled if (!enabled()) { return; } if (backend != nullptr) { backend->handle_msp(pkt); } } #endif //HAL_MSP_OPTICALFLOW_ENABLED void OpticalFlow::update_state(const OpticalFlow_state &state) { _state = state; _last_update_ms = AP_HAL::millis(); // write to log and send to EKF if new data has arrived AP::ahrs_navekf().writeOptFlowMeas(quality(), _state.flowRate, _state.bodyRate, _last_update_ms, get_pos_offset()); Log_Write_Optflow(); } void OpticalFlow::Log_Write_Optflow() { AP_Logger *logger = AP_Logger::get_singleton(); if (logger == nullptr) { return; } if (_log_bit != (uint32_t)-1 && !logger->should_log(_log_bit)) { return; } struct log_Optflow pkt = { LOG_PACKET_HEADER_INIT(LOG_OPTFLOW_MSG), time_us : AP_HAL::micros64(), surface_quality : _state.surface_quality, flow_x : _state.flowRate.x, flow_y : _state.flowRate.y, body_x : _state.bodyRate.x, body_y : _state.bodyRate.y }; logger->WriteBlock(&pkt, sizeof(pkt)); } // singleton instance OpticalFlow *OpticalFlow::_singleton; namespace AP { OpticalFlow *opticalflow() { return OpticalFlow::get_singleton(); } }