/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#pragma once
#include "AP_Vehicle_config.h"
#if AP_VEHICLE_ENABLED
/*
this header holds a parameter structure for each vehicle type for
parameters needed by multiple libraries
*/
#include "ModeReason.h" // reasons can't be defined in this header due to circular loops
#include
#include
#include
#include
#include // board configuration library
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include // Notify library
#include
#include
#include // APM relay
#include // RSSI Library
#include
#include // Serial manager library
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include // statistics library
#if AP_SCRIPTING_ENABLED
#include
#endif
#include
#if AP_GRIPPER_ENABLED
#include
#endif
class AP_DDS_Client;
class AP_Vehicle : public AP_HAL::HAL::Callbacks {
public:
AP_Vehicle() {
if (_singleton) {
AP_HAL::panic("Too many Vehicles");
}
AP_Param::setup_object_defaults(this, var_info);
_singleton = this;
}
/* Do not allow copies */
CLASS_NO_COPY(AP_Vehicle);
static AP_Vehicle *get_singleton();
// setup() is called once during vehicle startup to initialise the
// vehicle object and the objects it contains. The
// AP_HAL_MAIN_CALLBACKS pragma creates a main(...) function
// referencing an object containing setup() and loop() functions.
// A vehicle is not expected to override setup(), but
// subclass-specific initialisation can be done in init_ardupilot
// which is called from setup().
void setup(void) override final;
// HAL::Callbacks implementation.
void loop() override final;
// set_mode *must* set control_mode_reason
virtual bool set_mode(const uint8_t new_mode, const ModeReason reason) = 0;
virtual uint8_t get_mode() const = 0;
ModeReason get_control_mode_reason() const {
return control_mode_reason;
}
virtual bool current_mode_requires_mission() const { return false; }
// perform any notifications required to indicate a mode change
// failed due to a bad mode number being supplied. This can
// happen for many reasons - bad mavlink packet and bad mode
// parameters for example.
void notify_no_such_mode(uint8_t mode_number);
void get_common_scheduler_tasks(const AP_Scheduler::Task*& tasks, uint8_t& num_tasks);
// implementations *MUST* fill in all passed-in fields or we get
// Valgrind errors
#if AP_SCHEDULER_ENABLED
virtual void get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) = 0;
#endif
/*
set the "likely flying" flag. This is not guaranteed to be
accurate, but is the vehicle codes best guess as to the whether
the vehicle is currently flying
*/
void set_likely_flying(bool b) {
if (b && !likely_flying) {
_last_flying_ms = AP_HAL::millis();
}
likely_flying = b;
}
/*
get the likely flying status. Returns true if the vehicle code
thinks we are flying at the moment. Not guaranteed to be
accurate
*/
bool get_likely_flying(void) const {
return likely_flying;
}
/*
return time in milliseconds since likely_flying was set
true. Returns zero if likely_flying is currently false
*/
uint32_t get_time_flying_ms(void) const {
if (!likely_flying) {
return 0;
}
return AP_HAL::millis() - _last_flying_ms;
}
// returns true if the vehicle has crashed
virtual bool is_crashed() const;
#if AP_EXTERNAL_CONTROL_ENABLED
// Method to control vehicle position for use by external control
virtual bool set_target_location(const Location& target_loc) { return false; }
#endif // AP_EXTERNAL_CONTROL_ENABLED
#if AP_SCRIPTING_ENABLED
/*
methods to control vehicle for use by scripting
*/
virtual bool start_takeoff(float alt) { return false; }
virtual bool set_target_pos_NED(const Vector3f& target_pos, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool yaw_relative, bool terrain_alt) { return false; }
virtual bool set_target_posvel_NED(const Vector3f& target_pos, const Vector3f& target_vel) { return false; }
virtual bool set_target_posvelaccel_NED(const Vector3f& target_pos, const Vector3f& target_vel, const Vector3f& target_accel, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool yaw_relative) { return false; }
virtual bool set_target_velocity_NED(const Vector3f& vel_ned) { return false; }
virtual bool set_target_velaccel_NED(const Vector3f& target_vel, const Vector3f& target_accel, bool use_yaw, float yaw_deg, bool use_yaw_rate, float yaw_rate_degs, bool yaw_relative) { return false; }
virtual bool set_target_angle_and_climbrate(float roll_deg, float pitch_deg, float yaw_deg, float climb_rate_ms, bool use_yaw_rate, float yaw_rate_degs) { return false; }
// command throttle percentage and roll, pitch, yaw target
// rates. For use with scripting controllers
virtual void set_target_throttle_rate_rpy(float throttle_pct, float roll_rate_dps, float pitch_rate_dps, float yaw_rate_dps) {}
virtual void set_rudder_offset(float rudder_pct, bool run_yaw_rate_controller) {}
virtual bool nav_scripting_enable(uint8_t mode) {return false;}
// get target location (for use by scripting)
virtual bool get_target_location(Location& target_loc) { return false; }
virtual bool update_target_location(const Location &old_loc, const Location &new_loc) { return false; }
// circle mode controls (only used by scripting with Copter)
virtual bool get_circle_radius(float &radius_m) { return false; }
virtual bool set_circle_rate(float rate_dps) { return false; }
// get or set steering and throttle (-1 to +1) (for use by scripting with Rover)
virtual bool set_steering_and_throttle(float steering, float throttle) { return false; }
virtual bool get_steering_and_throttle(float& steering, float& throttle) { return false; }
// set turn rate in deg/sec and speed in meters/sec (for use by scripting with Rover)
virtual bool set_desired_turn_rate_and_speed(float turn_rate, float speed) { return false; }
// set auto mode speed in meters/sec (for use by scripting with Copter/Rover)
virtual bool set_desired_speed(float speed) { return false; }
// support for NAV_SCRIPT_TIME mission command
virtual bool nav_script_time(uint16_t &id, uint8_t &cmd, float &arg1, float &arg2, int16_t &arg3, int16_t &arg4) { return false; }
virtual void nav_script_time_done(uint16_t id) {}
// allow for VTOL velocity matching of a target
virtual bool set_velocity_match(const Vector2f &velocity) { return false; }
// returns true if the EKF failsafe has triggered
virtual bool has_ekf_failsafed() const { return false; }
// allow for landing descent rate to be overridden by a script, may be -ve to climb
virtual bool set_land_descent_rate(float descent_rate) { return false; }
// control outputs enumeration
enum class ControlOutput {
Roll = 1,
Pitch = 2,
Throttle = 3,
Yaw = 4,
Lateral = 5,
MainSail = 6,
WingSail = 7,
Walking_Height = 8,
Last_ControlOutput // place new values before this
};
// get control output (for use in scripting)
// returns true on success and control_value is set to a value in the range -1 to +1
virtual bool get_control_output(AP_Vehicle::ControlOutput control_output, float &control_value) { return false; }
#endif // AP_SCRIPTING_ENABLED
// returns true if vehicle is in the process of landing
virtual bool is_landing() const { return false; }
// returns true if vehicle is in the process of taking off
virtual bool is_taking_off() const { return false; }
// zeroing the RC outputs can prevent unwanted motor movement:
virtual bool should_zero_rc_outputs_on_reboot() const { return false; }
// reboot the vehicle in an orderly manner, doing various cleanups
// and flashing LEDs as appropriate
void reboot(bool hold_in_bootloader);
/*
get the distance to next wp in meters
return false if failed or n/a
*/
virtual bool get_wp_distance_m(float &distance) const { return false; }
/*
get the current wp bearing in degrees
return false if failed or n/a
*/
virtual bool get_wp_bearing_deg(float &bearing) const { return false; }
/*
get the current wp crosstrack error in meters
return false if failed or n/a
*/
virtual bool get_wp_crosstrack_error_m(float &xtrack_error) const { return false; }
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
AP_Frsky_Parameters frsky_parameters;
#endif
/*
Returns the pan and tilt for use by onvif camera in scripting
*/
virtual bool get_pan_tilt_norm(float &pan_norm, float &tilt_norm) const { return false; }
// Returns roll and pitch for OSD Horizon, Plane overrides to correct for VTOL view and fixed wing PTCH_TRIM_DEG
virtual void get_osd_roll_pitch_rad(float &roll, float &pitch) const;
/*
get the target earth-frame angular velocities in rad/s (Z-axis component used by some gimbals)
*/
virtual bool get_rate_ef_targets(Vector3f& rate_ef_targets) const { return false; }
protected:
virtual void init_ardupilot() = 0;
virtual void load_parameters() = 0;
void load_parameters(AP_Int16 &format_version, const uint16_t expected_format_version);
virtual void set_control_channels() {}
// board specific config
AP_BoardConfig BoardConfig;
#if HAL_CANMANAGER_ENABLED
// board specific config for CAN bus
AP_CANManager can_mgr;
#endif
// main loop scheduler
AP_Scheduler scheduler;
// IMU variables
// Integration time; time last loop took to run
float G_Dt;
// sensor drivers
#if AP_GPS_ENABLED
AP_GPS gps;
#endif
AP_Baro barometer;
#if AP_COMPASS_ENABLED
Compass compass;
#endif
#if AP_INERTIALSENSOR_ENABLED
AP_InertialSensor ins;
#endif
#if HAL_BUTTON_ENABLED
AP_Button button;
#endif
RangeFinder rangefinder;
#if HAL_LOGGING_ENABLED
AP_Logger logger;
AP_Int32 bitmask_unused;
// method supplied by vehicle to provide log bitmask:
virtual const AP_Int32 &get_log_bitmask() { return bitmask_unused; }
virtual const struct LogStructure *get_log_structures() const { return nullptr; }
virtual uint8_t get_num_log_structures() const { return 0; }
#endif
#if AP_GRIPPER_ENABLED
AP_Gripper gripper;
#endif
#if AP_RSSI_ENABLED
AP_RSSI rssi;
#endif
#if HAL_RUNCAM_ENABLED
AP_RunCam runcam;
#endif
#if HAL_GYROFFT_ENABLED
AP_GyroFFT gyro_fft;
#endif
#if AP_VIDEOTX_ENABLED
AP_VideoTX vtx;
#endif
#if AP_SERIALMANAGER_ENABLED
AP_SerialManager serial_manager;
#endif
#if AP_RELAY_ENABLED
AP_Relay relay;
#endif
#if AP_SERVORELAYEVENTS_ENABLED
AP_ServoRelayEvents ServoRelayEvents;
#endif
// notification object for LEDs, buzzers etc (parameter set to
// false disables external leds)
AP_Notify notify;
#if AP_AHRS_ENABLED
// Inertial Navigation EKF
AP_AHRS ahrs;
#endif
#if HAL_HOTT_TELEM_ENABLED
AP_Hott_Telem hott_telem;
#endif
#if HAL_VISUALODOM_ENABLED
AP_VisualOdom visual_odom;
#endif
#if HAL_WITH_ESC_TELEM
AP_ESC_Telem esc_telem;
#endif
#if AP_OPENDRONEID_ENABLED
AP_OpenDroneID opendroneid;
#endif
#if HAL_MSP_ENABLED
AP_MSP msp;
#endif
#if HAL_GENERATOR_ENABLED
AP_Generator generator;
#endif
#if HAL_EXTERNAL_AHRS_ENABLED
AP_ExternalAHRS externalAHRS;
#endif
#if AP_SMARTAUDIO_ENABLED
AP_SmartAudio smartaudio;
#endif
#if AP_TRAMP_ENABLED
AP_Tramp tramp;
#endif
#if AP_NETWORKING_ENABLED
AP_Networking networking;
#endif
#if HAL_EFI_ENABLED
// EFI Engine Monitor
AP_EFI efi;
#endif
#if AP_AIRSPEED_ENABLED
AP_Airspeed airspeed;
#endif
#if AP_STATS_ENABLED
// vehicle statistics
AP_Stats stats;
#endif
#if AP_AIS_ENABLED
// Automatic Identification System - for tracking sea-going vehicles
AP_AIS ais;
#endif
#if HAL_NMEA_OUTPUT_ENABLED
AP_NMEA_Output nmea;
#endif
#if AP_KDECAN_ENABLED
AP_KDECAN kdecan;
#endif
#if AP_FENCE_ENABLED
AC_Fence fence;
#endif
#if AP_TEMPERATURE_SENSOR_ENABLED
AP_TemperatureSensor temperature_sensor;
#endif
#if AP_SCRIPTING_ENABLED
AP_Scripting scripting;
#endif
static const struct AP_Param::GroupInfo var_info[];
static const struct AP_Scheduler::Task scheduler_tasks[];
#if OSD_ENABLED
void publish_osd_info();
#endif
#if HAL_INS_ACCELCAL_ENABLED
// update accel calibration
void accel_cal_update();
#endif
// call the arming library's update function
void update_arming();
// check for motor noise at a particular frequency
void check_motor_noise();
ModeReason control_mode_reason = ModeReason::UNKNOWN;
#if AP_SIM_ENABLED
SITL::SIM sitl;
#endif
#if AP_DDS_ENABLED
// Declare the dds client for communication with ROS2 and DDS(common for all vehicles)
AP_DDS_Client *dds_client;
bool init_dds_client() WARN_IF_UNUSED;
#endif
// Check if this mode can be entered from the GCS
bool block_GCS_mode_change(uint8_t mode_num, const uint8_t *mode_list, uint8_t mode_list_length) const;
private:
// delay() callback that processing MAVLink packets
static void scheduler_delay_callback();
// if there's been a watchdog reset, notify the world via a
// statustext:
void send_watchdog_reset_statustext();
#if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED
// update the harmonic notch for throttle based notch
void update_throttle_notch(AP_InertialSensor::HarmonicNotch ¬ch);
// update the harmonic notch
void update_dynamic_notch(AP_InertialSensor::HarmonicNotch ¬ch);
// run notch update at either loop rate or 200Hz
void update_dynamic_notch_at_specified_rate();
#endif // AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED
// decimation for 1Hz update
uint8_t one_Hz_counter;
void one_Hz_update();
bool likely_flying; // true if vehicle is probably flying
uint32_t _last_flying_ms; // time when likely_flying last went true
#if AP_INERTIALSENSOR_HARMONICNOTCH_ENABLED
uint32_t _last_notch_update_ms[HAL_INS_NUM_HARMONIC_NOTCH_FILTERS]; // last time update_dynamic_notch() was run
#endif
static AP_Vehicle *_singleton;
#if HAL_GYROFFT_ENABLED && HAL_WITH_ESC_TELEM
LowPassFilterFloat esc_noise[ESC_TELEM_MAX_ESCS];
uint32_t last_motor_noise_ms;
#endif
bool done_safety_init;
uint32_t _last_internal_errors; // backup of AP_InternalError::internal_errors bitmask
#if AP_CUSTOMROTATIONS_ENABLED
AP_CustomRotations custom_rotations;
#endif
#if AP_FILTER_ENABLED
AP_Filters filters;
#endif
// Bitmask of modes to disable from gcs
AP_Int32 flight_mode_GCS_block;
};
namespace AP {
AP_Vehicle *vehicle();
};
extern const AP_HAL::HAL& hal;
extern const AP_Param::Info vehicle_var_info[];
#include "AP_Vehicle_Type.h"
#endif // AP_VEHICLE_ENABLED