/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * control_sport.pde - init and run calls for sport flight mode */ // sport_init - initialise sport controller static bool sport_init(bool ignore_checks) { // initialize vertical speed and accelerationj pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max); pos_control.set_accel_z(g.pilot_accel_z); // initialise altitude target to stopping point pos_control.set_target_to_stopping_point_z(); return true; } // sport_run - runs the sport controller // should be called at 100hz or more static void sport_run() { float target_roll_rate, target_pitch_rate, target_yaw_rate; float target_climb_rate = 0; // if not armed or throttle at zero, set throttle to zero and exit immediately if(!motors.armed() || g.rc_3.control_in <= 0) { attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt); pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(g.rc_3.control_in)-throttle_average); return; } // apply SIMPLE mode transform update_simple_mode(); // get pilot's desired roll and pitch rates // calculate rate requests target_roll_rate = g.rc_1.control_in * g.acro_rp_p; target_pitch_rate = g.rc_2.control_in * g.acro_rp_p; int32_t roll_angle = wrap_180_cd(ahrs.roll_sensor); target_roll_rate -= constrain_int32(roll_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_roll; // Calculate trainer mode earth frame rate command for pitch int32_t pitch_angle = wrap_180_cd(ahrs.pitch_sensor); target_pitch_rate -= constrain_int32(pitch_angle, -ACRO_LEVEL_MAX_ANGLE, ACRO_LEVEL_MAX_ANGLE) * g.acro_balance_pitch; if (roll_angle > aparm.angle_max){ target_roll_rate -= g.acro_rp_p*(roll_angle-aparm.angle_max); }else if (roll_angle < -aparm.angle_max) { target_roll_rate -= g.acro_rp_p*(roll_angle+aparm.angle_max); } if (pitch_angle > aparm.angle_max){ target_pitch_rate -= g.acro_rp_p*(pitch_angle-aparm.angle_max); }else if (pitch_angle < -aparm.angle_max) { target_pitch_rate -= g.acro_rp_p*(pitch_angle+aparm.angle_max); } // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(g.rc_4.control_in); // get pilot desired climb rate target_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in); target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max-takeoff_get_speed(), g.pilot_velocity_z_max-takeoff_get_speed()); // check for take-off if (ap.land_complete && (takeoff_state.running || g.rc_3.control_in > get_takeoff_trigger_throttle())) { if (!takeoff_state.running) { takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f)); } // indicate we are taking off set_land_complete(false); // clear i term when we're taking off set_throttle_takeoff(); } // reset target lean angles and heading while landed if (ap.land_complete) { // move throttle to between minimum and non-takeoff-throttle to keep us on the ground attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(g.rc_3.control_in),true,g.throttle_filt); pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(g.rc_3.control_in)-throttle_average); }else{ // call attitude controller attitude_control.rate_ef_roll_pitch_yaw(target_roll_rate, target_pitch_rate, target_yaw_rate); // call throttle controller if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) { // if sonar is ok, use surface tracking target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt); } // call position controller pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt); takeoff_increment_alt_target(G_Dt); pos_control.update_z_controller(); } }