/* * polygon.cpp * Copyright (C) Andrew Tridgell 2011 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "AP_Math.h" #pragma GCC optimize("O3") /* * The point in polygon algorithm is based on: * https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html */ /* * Polygon_outside(): test for a point in a polygon * Input: P = a point, * V[] = vertex points of a polygon V[n+1] with V[n]=V[0] * Return: true if P is outside the polygon * * This does not take account of the curvature of the earth, but we * expect that to be very small over the distances involved in the * fence boundary */ template bool Polygon_outside(const Vector2 &P, const Vector2 *V, unsigned n) { const bool complete = Polygon_complete(V, n); if (complete) { // the last point is the same as the first point; treat as if // the last point wasn't passed in n--; } unsigned i, j; // step through each edge pair-wise looking for crossings: bool outside = true; for (i=0; i= n) { j = 0; } if ((V[i].y > P.y) == (V[j].y > P.y)) { continue; } const T dx1 = P.x - V[i].x; const T dx2 = V[j].x - V[i].x; const T dy1 = P.y - V[i].y; const T dy2 = V[j].y - V[i].y; const int8_t dx1s = (dx1 < 0) ? -1 : 1; const int8_t dx2s = (dx2 < 0) ? -1 : 1; const int8_t dy1s = (dy1 < 0) ? -1 : 1; const int8_t dy2s = (dy2 < 0) ? -1 : 1; const int8_t m1 = dx1s * dy2s; const int8_t m2 = dx2s * dy1s; // we avoid the 64 bit multiplies if we can based on sign checks. if (dy2 < 0) { if (m1 > m2) { outside = !outside; } else if (m1 < m2) { continue; } else { if (std::is_floating_point::value) { if ( dx1 * dy2 > dx2 * dy1 ) { outside = !outside; } } else { if ( dx1 * (int64_t)dy2 > dx2 * (int64_t)dy1 ) { outside = !outside; } } } } else { if (m1 < m2) { outside = !outside; } else if (m1 > m2) { continue; } else { if (std::is_floating_point::value) { if ( dx1 * dy2 < dx2 * dy1 ) { outside = !outside; } } else { if ( dx1 * (int64_t)dy2 < dx2 * (int64_t)dy1 ) { outside = !outside; } } } } } return outside; } /* * check if a polygon is complete. * * We consider a polygon to be complete if we have at least 4 points, * and the first point is the same as the last point. That is the * minimum requirement for the Polygon_outside function to work */ template bool Polygon_complete(const Vector2 *V, unsigned n) { return (n >= 4 && V[n-1] == V[0]); } // Necessary to avoid linker errors template bool Polygon_outside(const Vector2l &P, const Vector2l *V, unsigned n); template bool Polygon_complete(const Vector2l *V, unsigned n); template bool Polygon_outside(const Vector2f &P, const Vector2f *V, unsigned n); template bool Polygon_complete(const Vector2f *V, unsigned n); /* determine if the polygon of N verticies defined by points V is intersected by a line from point p1 to point p2 */ bool Polygon_intersects(const Vector2f *V, unsigned N, const Vector2f &p1, const Vector2f &p2) { for (uint8_t i=0; i p1.x && v2.x > p1.x && v1.x > p2.x && v2.x > p2.x) { continue; } if (v1.y > p1.y && v2.y > p1.y && v1.y > p2.y && v2.y > p2.y) { continue; } if (v1.x < p1.x && v2.x < p1.x && v1.x < p2.x && v2.x < p2.x) { continue; } if (v1.y < p1.y && v2.y < p1.y && v1.y < p2.y && v2.y < p2.y) { continue; } if (Vector2f::segment_intersection(v1,v2,p1,p2,tmp)) { return true; } } return false; } /* return the closest distance that a line from p1 to p2 comes to an edge of closed polygon V, defined by N points */ float Polygon_closest_distance_line(const Vector2f *V, unsigned N, const Vector2f &p1, const Vector2f &p2) { if (Polygon_intersects(V,N,p1,p2)) { return 0; } float closest_sq = FLT_MAX; for (uint8_t i=0; i