/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * Many thanks to members of the UAVCAN project: * Pavel Kirienko * Ilia Sheremet * * license info can be found in the uavcan submodule located: * modules/uavcan/libuavcan_drivers/linux/include/uavcan_linux/socketcan.hpp */ #include #include #include #if HAL_WITH_UAVCAN #include "CAN.h" #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; using namespace Linux; uavcan::MonotonicTime getMonotonic() { return uavcan::MonotonicTime::fromUSec(AP_HAL::micros64()); } static can_frame makeSocketCanFrame(const uavcan::CanFrame& uavcan_frame) { can_frame sockcan_frame { uavcan_frame.id& uavcan::CanFrame::MaskExtID, uavcan_frame.dlc, { } }; std::copy(uavcan_frame.data, uavcan_frame.data + uavcan_frame.dlc, sockcan_frame.data); if (uavcan_frame.isExtended()) { sockcan_frame.can_id |= CAN_EFF_FLAG; } if (uavcan_frame.isErrorFrame()) { sockcan_frame.can_id |= CAN_ERR_FLAG; } if (uavcan_frame.isRemoteTransmissionRequest()) { sockcan_frame.can_id |= CAN_RTR_FLAG; } return sockcan_frame; } static uavcan::CanFrame makeUavcanFrame(const can_frame& sockcan_frame) { uavcan::CanFrame uavcan_frame(sockcan_frame.can_id & CAN_EFF_MASK, sockcan_frame.data, sockcan_frame.can_dlc); if (sockcan_frame.can_id & CAN_EFF_FLAG) { uavcan_frame.id |= uavcan::CanFrame::FlagEFF; } if (sockcan_frame.can_id & CAN_ERR_FLAG) { uavcan_frame.id |= uavcan::CanFrame::FlagERR; } if (sockcan_frame.can_id & CAN_RTR_FLAG) { uavcan_frame.id |= uavcan::CanFrame::FlagRTR; } return uavcan_frame; } bool CAN::begin(uint32_t bitrate) { if (_initialized) return _initialized; // TODO: Add possibility change bitrate _fd = openSocket(HAL_BOARD_CAN_IFACE_NAME); if (_fd > 0) { _bitrate = bitrate; _initialized = true; } else { _initialized = false; } return _initialized; } void CAN::reset() { if (_initialized && _bitrate != 0) { close(_fd); begin(_bitrate); } } void CAN::end() { _initialized = false; close(_fd); } bool CAN::is_initialized() { return _initialized; } int32_t CAN::tx_pending() { if (_initialized) { return _tx_queue.size(); } else { return -1; } } int32_t CAN::available() { if (_initialized) { return _rx_queue.size(); } else { return -1; } } int CAN::openSocket(const std::string& iface_name) { errno = 0; int s = socket(PF_CAN, SOCK_RAW, CAN_RAW); if (s < 0) { return s; } std::shared_ptr defer(&s, [](int* fd) { if (*fd >= 0) close(*fd); }); const int ret = s; // Detect the iface index auto ifr = ifreq(); if (iface_name.length() >= IFNAMSIZ) { errno = ENAMETOOLONG; return -1; } std::strncpy(ifr.ifr_name, iface_name.c_str(), iface_name.length()); if (ioctl(s, SIOCGIFINDEX, &ifr) < 0 || ifr.ifr_ifindex < 0) { return -1; } // Bind to the specified CAN iface { auto addr = sockaddr_can(); addr.can_family = AF_CAN; addr.can_ifindex = ifr.ifr_ifindex; if (bind(s, reinterpret_cast(&addr), sizeof(addr)) < 0) { return -1; } } // Configure { const int on = 1; // Timestamping if (setsockopt(s, SOL_SOCKET, SO_TIMESTAMP, &on, sizeof(on)) < 0) { return -1; } // Socket loopback if (setsockopt(s, SOL_CAN_RAW, CAN_RAW_RECV_OWN_MSGS, &on, sizeof(on)) < 0) { return -1; } // Non-blocking if (fcntl(s, F_SETFL, O_NONBLOCK) < 0) { return -1; } } // Validate the resulting socket { int socket_error = 0; socklen_t errlen = sizeof(socket_error); getsockopt(s, SOL_SOCKET, SO_ERROR, reinterpret_cast(&socket_error), &errlen); if (socket_error != 0) { errno = socket_error; return -1; } } s = -1; return ret; } int16_t CAN::send(const uavcan::CanFrame& frame, const uavcan::MonotonicTime tx_deadline, const uavcan::CanIOFlags flags) { _tx_queue.emplace(frame, tx_deadline, flags, _tx_frame_counter); _tx_frame_counter++; _pollRead(); // Read poll is necessary because it can release the pending TX flag _pollWrite(); return 1; } int16_t CAN::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic, uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags) { if (_rx_queue.empty()) { _pollRead(); // This allows to use the socket not calling poll() explicitly. if (_rx_queue.empty()) { return 0; } } { const RxItem& rx = _rx_queue.front(); out_frame = rx.frame; out_ts_monotonic = rx.ts_mono; out_ts_utc = rx.ts_utc; out_flags = rx.flags; } _rx_queue.pop(); return 1; } bool CAN::hasReadyTx() const { return !_tx_queue.empty() && (_frames_in_socket_tx_queue < _max_frames_in_socket_tx_queue); } bool CAN::hasReadyRx() const { return !_rx_queue.empty(); } void CAN::poll(bool read, bool write) { if (read) { _pollRead(); // Read poll must be executed first because it may decrement _frames_in_socket_tx_queue } if (write) { _pollWrite(); } } int16_t CAN::configureFilters(const uavcan::CanFilterConfig* const filter_configs, const std::uint16_t num_configs) { if (filter_configs == nullptr) { return -1; } _hw_filters_container.clear(); _hw_filters_container.resize(num_configs); for (unsigned i = 0; i < num_configs; i++) { const uavcan::CanFilterConfig& fc = filter_configs[i]; _hw_filters_container[i].can_id = fc.id & uavcan::CanFrame::MaskExtID; _hw_filters_container[i].can_mask = fc.mask & uavcan::CanFrame::MaskExtID; if (fc.id & uavcan::CanFrame::FlagEFF) { _hw_filters_container[i].can_id |= CAN_EFF_FLAG; } if (fc.id & uavcan::CanFrame::FlagRTR) { _hw_filters_container[i].can_id |= CAN_RTR_FLAG; } if (fc.mask & uavcan::CanFrame::FlagEFF) { _hw_filters_container[i].can_mask |= CAN_EFF_FLAG; } if (fc.mask & uavcan::CanFrame::FlagRTR) { _hw_filters_container[i].can_mask |= CAN_RTR_FLAG; } } return 0; } /** * SocketCAN emulates the CAN filters in software, so the number of filters is virtually unlimited. * This method returns a constant value. */ static constexpr unsigned NumFilters = CAN_FILTER_NUMBER; uint16_t CAN::getNumFilters() const { return NumFilters; } uint64_t CAN::getErrorCount() const { uint64_t ec = 0; for (auto& kv : _errors) { ec += kv.second; } return ec; } void CAN::_pollWrite() { while (hasReadyTx()) { const TxItem tx = _tx_queue.top(); if (tx.deadline >= getMonotonic()) { const int res = _write(tx.frame); if (res == 1) { // Transmitted successfully _incrementNumFramesInSocketTxQueue(); if (tx.flags & uavcan::CanIOFlagLoopback) { _pending_loopback_ids.insert(tx.frame.id); } } else if (res == 0) { // Not transmitted, nor is it an error break; // Leaving the loop, the frame remains enqueued for the next retry } else { // Transmission error _registerError(SocketCanError::SocketWriteFailure); } } else { _registerError(SocketCanError::TxTimeout); } // Removing the frame from the queue even if transmission failed _tx_queue.pop(); } } void CAN::_pollRead() { uint8_t iterations_count = 0; while (iterations_count < CAN_MAX_POLL_ITERATIONS_COUNT) { iterations_count++; RxItem rx; rx.ts_mono = getMonotonic(); // Monotonic timestamp is not required to be precise (unlike UTC) bool loopback = false; const int res = _read(rx.frame, rx.ts_utc, loopback); if (res == 1) { bool accept = true; if (loopback) { // We receive loopback for all CAN frames _confirmSentFrame(); rx.flags |= uavcan::CanIOFlagLoopback; accept = _wasInPendingLoopbackSet(rx.frame); } if (accept) { _rx_queue.push(rx); } } else if (res == 0) { break; } else { _registerError(SocketCanError::SocketReadFailure); break; } } } int CAN::_write(const uavcan::CanFrame& frame) const { errno = 0; const can_frame sockcan_frame = makeSocketCanFrame(frame); const int res = write(_fd, &sockcan_frame, sizeof(sockcan_frame)); if (res <= 0) { if (errno == ENOBUFS || errno == EAGAIN) { // Writing is not possible atm, not an error return 0; } return res; } if (res != sizeof(sockcan_frame)) { return -1; } return 1; } int CAN::_read(uavcan::CanFrame& frame, uavcan::UtcTime& ts_utc, bool& loopback) const { auto iov = iovec(); auto sockcan_frame = can_frame(); iov.iov_base = &sockcan_frame; iov.iov_len = sizeof(sockcan_frame); union { uint8_t data[CMSG_SPACE(sizeof(::timeval))]; struct cmsghdr align; } control; auto msg = msghdr(); msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = control.data; msg.msg_controllen = sizeof(control.data); const int res = recvmsg(_fd, &msg, MSG_DONTWAIT); if (res <= 0) { return (res < 0 && errno == EWOULDBLOCK) ? 0 : res; } /* * Flags */ loopback = (msg.msg_flags & static_cast(MSG_CONFIRM)) != 0; if (!loopback && !_checkHWFilters(sockcan_frame)) { return 0; } frame = makeUavcanFrame(sockcan_frame); /* * Timestamp */ const cmsghdr* const cmsg = CMSG_FIRSTHDR(&msg); if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SO_TIMESTAMP) { auto tv = timeval(); std::memcpy(&tv, CMSG_DATA(cmsg), sizeof(tv)); // Copy to avoid alignment problems ts_utc = uavcan::UtcTime::fromUSec(std::uint64_t(tv.tv_sec) * 1000000ULL + tv.tv_usec); } else { return -1; } return 1; } void CAN::_incrementNumFramesInSocketTxQueue() { _frames_in_socket_tx_queue++; } void CAN::_confirmSentFrame() { if (_frames_in_socket_tx_queue > 0) { _frames_in_socket_tx_queue--; } } bool CAN::_wasInPendingLoopbackSet(const uavcan::CanFrame& frame) { if (_pending_loopback_ids.count(frame.id) > 0) { _pending_loopback_ids.erase(frame.id); return true; } return false; } bool CAN::_checkHWFilters(const can_frame& frame) const { if (!_hw_filters_container.empty()) { for (auto& f : _hw_filters_container) { if (((frame.can_id & f.can_mask) ^ f.can_id) == 0) { return true; } } return false; } else { return true; } } void CANManager::IfaceWrapper::updateDownStatusFromPollResult(const pollfd& pfd) { if (!_down&& (pfd.revents & POLLERR)) { int error = 0; socklen_t errlen = sizeof(error); getsockopt(pfd.fd, SOL_SOCKET, SO_ERROR, reinterpret_cast(&error), &errlen); _down= error == ENETDOWN || error == ENODEV; hal.console->printf("Iface %d is dead; error %d", this->getFileDescriptor(), error); } } void CANManager::_timer_tick() { if (!_initialized) return; if (p_uavcan != nullptr) { p_uavcan->do_cyclic(); } else { hal.console->printf("p_uavcan is nullptr"); } } bool CANManager::begin(uint32_t bitrate, uint8_t can_number) { if (init(can_number) >= 0) { _initialized = true; } return _initialized; } bool CANManager::is_initialized() { return _initialized; } void CANManager::initialized(bool val) { _initialized = val; } AP_UAVCAN *CANManager::get_UAVCAN(void) { return p_uavcan; } void CANManager::set_UAVCAN(AP_UAVCAN *uavcan) { p_uavcan = uavcan; } CAN* CANManager::getIface(uint8_t iface_index) { return (iface_index >= _ifaces.size()) ? nullptr : _ifaces[iface_index].get(); } int CANManager::init(uint8_t can_number) { int res = -1; char iface_name[16]; sprintf(iface_name, "can%u", can_number); res = addIface(iface_name); if (res < 0) { hal.console->printf("CANManager: init %s failed\n", iface_name); } return res; } int16_t CANManager::select(uavcan::CanSelectMasks& inout_masks, const uavcan::CanFrame* (&)[uavcan::MaxCanIfaces], uavcan::MonotonicTime blocking_deadline) { // Detecting whether we need to block at all bool need_block = (inout_masks.write == 0); // Write queue is infinite for (unsigned i = 0; need_block && (i < _ifaces.size()); i++) { const bool need_read = inout_masks.read & (1 << i); if (need_read && _ifaces[i]->hasReadyRx()) { need_block = false; } } if (need_block) { // Poll FD set setup pollfd pollfds[uavcan::MaxCanIfaces] = {}; unsigned num_pollfds = 0; IfaceWrapper* pollfd_index_to_iface[uavcan::MaxCanIfaces] = {}; for (unsigned i = 0; i < _ifaces.size(); i++) { if (!_ifaces[i]->isDown()) { pollfds[num_pollfds].fd = _ifaces[i]->getFileDescriptor(); pollfds[num_pollfds].events = POLLIN; if (_ifaces[i]->hasReadyTx() || (inout_masks.write & (1U << i))) { pollfds[num_pollfds].events |= POLLOUT; } pollfd_index_to_iface[num_pollfds] = _ifaces[i].get(); num_pollfds++; } } if (num_pollfds == 0) { return 0; } // Timeout conversion const std::int64_t timeout_usec = (blocking_deadline - getMonotonic()).toUSec(); auto ts = timespec(); if (timeout_usec > 0) { ts.tv_sec = timeout_usec / 1000000LL; ts.tv_nsec = (timeout_usec % 1000000LL) * 1000; } // Blocking here const int res = ppoll(pollfds, num_pollfds, &ts, nullptr); if (res < 0) { return res; } // Handling poll output for (unsigned i = 0; i < num_pollfds; i++) { pollfd_index_to_iface[i]->updateDownStatusFromPollResult(pollfds[i]); const bool poll_read = pollfds[i].revents & POLLIN; const bool poll_write = pollfds[i].revents & POLLOUT; pollfd_index_to_iface[i]->poll(poll_read, poll_write); } } // Writing the output masks inout_masks = uavcan::CanSelectMasks(); for (unsigned i = 0; i < _ifaces.size(); i++) { if (!_ifaces[i]->isDown()) { inout_masks.write |= std::uint8_t(1U << i); // Always ready to write if not down } if (_ifaces[i]->hasReadyRx()) { inout_masks.read |= std::uint8_t(1U << i); // Readability depends only on RX buf, even if down } } // Return value is irrelevant as long as it's non-negative return _ifaces.size(); } int CANManager::addIface(const std::string& iface_name) { if (_ifaces.size() >= uavcan::MaxCanIfaces) { return -1; } // Open the socket const int fd = CAN::openSocket(iface_name); if (fd < 0) { return fd; } // Construct the iface - upon successful construction the iface will take ownership of the fd. _ifaces.emplace_back(new IfaceWrapper(fd)); hal.console->printf("New iface '%s' fd %d\n", iface_name.c_str(), fd); return _ifaces.size() - 1; } #endif