/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * NavEKF based AHRS (Attitude Heading Reference System) interface for * ArduPilot * */ #include #include "AP_AHRS.h" #include "AP_AHRS_View.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #define ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD radians(10) #define ATTITUDE_CHECK_THRESH_YAW_RAD radians(20) #ifndef HAL_AHRS_EKF_TYPE_DEFAULT #define HAL_AHRS_EKF_TYPE_DEFAULT 3 #endif // table of user settable parameters const AP_Param::GroupInfo AP_AHRS::var_info[] = { // index 0 and 1 are for old parameters that are no longer not used // @Param: GPS_GAIN // @DisplayName: AHRS GPS gain // @Description: This controls how much to use the GPS to correct the attitude. This should never be set to zero for a plane as it would result in the plane losing control in turns. For a plane please use the default value of 1.0. // @Range: 0.0 1.0 // @Increment: .01 // @User: Advanced AP_GROUPINFO("GPS_GAIN", 2, AP_AHRS, gps_gain, 1.0f), // @Param: GPS_USE // @DisplayName: AHRS use GPS for DCM navigation and position-down // @Description: This controls whether to use dead-reckoning or GPS based navigation. If set to 0 then the GPS won't be used for navigation, and only dead reckoning will be used. A value of zero should never be used for normal flight. Currently this affects only the DCM-based AHRS: the EKF uses GPS according to its own parameters. A value of 2 means to use GPS for height as well as position - both in DCM estimation and when determining altitude-above-home. // @Values: 0:Disabled,1:Use GPS for DCM position,2:Use GPS for DCM position and height // @User: Advanced AP_GROUPINFO("GPS_USE", 3, AP_AHRS, _gps_use, float(GPSUse::Enable)), // @Param: YAW_P // @DisplayName: Yaw P // @Description: This controls the weight the compass or GPS has on the heading. A higher value means the heading will track the yaw source (GPS or compass) more rapidly. // @Range: 0.1 0.4 // @Increment: .01 // @User: Advanced AP_GROUPINFO("YAW_P", 4, AP_AHRS, _kp_yaw, 0.2f), // @Param: RP_P // @DisplayName: AHRS RP_P // @Description: This controls how fast the accelerometers correct the attitude // @Range: 0.1 0.4 // @Increment: .01 // @User: Advanced AP_GROUPINFO("RP_P", 5, AP_AHRS, _kp, 0.2f), // @Param: WIND_MAX // @DisplayName: Maximum wind // @Description: This sets the maximum allowable difference between ground speed and airspeed. This allows the plane to cope with a failing airspeed sensor. A value of zero means to use the airspeed as is. See ARSPD_OPTIONS and ARSPD_MAX_WIND to disable airspeed sensors. // @Range: 0 127 // @Units: m/s // @Increment: 1 // @User: Advanced AP_GROUPINFO("WIND_MAX", 6, AP_AHRS, _wind_max, 0.0f), // NOTE: 7 was BARO_USE // @Param: TRIM_X // @DisplayName: AHRS Trim Roll // @Description: Compensates for the roll angle difference between the control board and the frame. Positive values make the vehicle roll right. // @Units: rad // @Range: -0.1745 +0.1745 // @Increment: 0.01 // @User: Standard // @Param: TRIM_Y // @DisplayName: AHRS Trim Pitch // @Description: Compensates for the pitch angle difference between the control board and the frame. Positive values make the vehicle pitch up/back. // @Units: rad // @Range: -0.1745 +0.1745 // @Increment: 0.01 // @User: Standard // @Param: TRIM_Z // @DisplayName: AHRS Trim Yaw // @Description: Not Used // @Units: rad // @Range: -0.1745 +0.1745 // @Increment: 0.01 // @User: Advanced AP_GROUPINFO("TRIM", 8, AP_AHRS, _trim, 0), // @Param: ORIENTATION // @DisplayName: Board Orientation // @Description: Overall board orientation relative to the standard orientation for the board type. This rotates the IMU and compass readings to allow the board to be oriented in your vehicle at any 90 or 45 degree angle. The label for each option is specified in the order of rotations for that orientation. This option takes affect on next boot. After changing you will need to re-level your vehicle. Firmware versions 4.2 and prior can use a CUSTOM (100) rotation to set the AHRS_CUSTOM_ROLL/PIT/YAW angles for AHRS orientation. Later versions provide two general custom rotations which can be used, Custom 1 and Custom 2, with CUST_ROT1_ROLL/PIT/YAW or CUST_ROT2_ROLL/PIT/YAW angles. // @Values: 0:None,1:Yaw45,2:Yaw90,3:Yaw135,4:Yaw180,5:Yaw225,6:Yaw270,7:Yaw315,8:Roll180,9:Yaw45Roll180,10:Yaw90Roll180,11:Yaw135Roll180,12:Pitch180,13:Yaw225Roll180,14:Yaw270Roll180,15:Yaw315Roll180,16:Roll90,17:Yaw45Roll90,18:Yaw90Roll90,19:Yaw135Roll90,20:Roll270,21:Yaw45Roll270,22:Yaw90Roll270,23:Yaw135Roll270,24:Pitch90,25:Pitch270,26:Yaw90Pitch180,27:Yaw270Pitch180,28:Pitch90Roll90,29:Pitch90Roll180,30:Pitch90Roll270,31:Pitch180Roll90,32:Pitch180Roll270,33:Pitch270Roll90,34:Pitch270Roll180,35:Pitch270Roll270,36:Yaw90Pitch180Roll90,37:Yaw270Roll90,38:Yaw293Pitch68Roll180,39:Pitch315,40:Pitch315Roll90,42:Roll45,43:Roll315,100:Custom 4.1 and older,101:Custom 1,102:Custom 2 // @User: Advanced AP_GROUPINFO("ORIENTATION", 9, AP_AHRS, _board_orientation, 0), // @Param: COMP_BETA // @DisplayName: AHRS Velocity Complementary Filter Beta Coefficient // @Description: This controls the time constant for the cross-over frequency used to fuse AHRS (airspeed and heading) and GPS data to estimate ground velocity. Time constant is 0.1/beta. A larger time constant will use GPS data less and a small time constant will use air data less. // @Range: 0.001 0.5 // @Increment: .01 // @User: Advanced AP_GROUPINFO("COMP_BETA", 10, AP_AHRS, beta, 0.1f), // @Param: GPS_MINSATS // @DisplayName: AHRS GPS Minimum satellites // @Description: Minimum number of satellites visible to use GPS for velocity based corrections attitude correction. This defaults to 6, which is about the point at which the velocity numbers from a GPS become too unreliable for accurate correction of the accelerometers. // @Range: 0 10 // @Increment: 1 // @User: Advanced AP_GROUPINFO("GPS_MINSATS", 11, AP_AHRS, _gps_minsats, 6), // NOTE: index 12 was for GPS_DELAY, but now removed, fixed delay // of 1 was found to be the best choice // 13 was the old EKF_USE // @Param: EKF_TYPE // @DisplayName: Use NavEKF Kalman filter for attitude and position estimation // @Description: This controls which NavEKF Kalman filter version is used for attitude and position estimation // @Values: 0:Disabled,2:Enable EKF2,3:Enable EKF3,11:ExternalAHRS // @User: Advanced AP_GROUPINFO("EKF_TYPE", 14, AP_AHRS, _ekf_type, HAL_AHRS_EKF_TYPE_DEFAULT), // @Param: CUSTOM_ROLL // @DisplayName: Board orientation roll offset // @Description: Autopilot mounting position roll offset. Positive values = roll right, negative values = roll left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM. // @Range: -180 180 // @Units: deg // @Increment: 1 // @User: Advanced // index 15 // @Param: CUSTOM_PIT // @DisplayName: Board orientation pitch offset // @Description: Autopilot mounting position pitch offset. Positive values = pitch up, negative values = pitch down. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM. // @Range: -180 180 // @Units: deg // @Increment: 1 // @User: Advanced // index 16 // @Param: CUSTOM_YAW // @DisplayName: Board orientation yaw offset // @Description: Autopilot mounting position yaw offset. Positive values = yaw right, negative values = yaw left. This parameter is only used when AHRS_ORIENTATION is set to CUSTOM. // @Range: -180 180 // @Units: deg // @Increment: 1 // @User: Advanced // index 17 AP_GROUPEND }; extern const AP_HAL::HAL& hal; // constructor AP_AHRS::AP_AHRS(uint8_t flags) : _ekf_flags(flags) { _singleton = this; // load default values from var_info table AP_Param::setup_object_defaults(this, var_info); #if APM_BUILD_COPTER_OR_HELI || APM_BUILD_TYPE(APM_BUILD_ArduSub) // Copter and Sub force the use of EKF _ekf_flags |= AP_AHRS::FLAG_ALWAYS_USE_EKF; #endif _dcm_matrix.identity(); // initialise the controller-to-autopilot-body trim state: _last_trim = _trim.get(); _rotation_autopilot_body_to_vehicle_body.from_euler(_last_trim.x, _last_trim.y, _last_trim.z); _rotation_vehicle_body_to_autopilot_body = _rotation_autopilot_body_to_vehicle_body.transposed(); } // init sets up INS board orientation void AP_AHRS::init() { // EKF1 is no longer supported - handle case where it is selected if (_ekf_type.get() == 1) { AP_BoardConfig::config_error("EKF1 not available"); } #if !HAL_NAVEKF2_AVAILABLE && HAL_NAVEKF3_AVAILABLE if (_ekf_type.get() == 2) { _ekf_type.set(3); EKF3.set_enable(true); } #elif !HAL_NAVEKF3_AVAILABLE && HAL_NAVEKF2_AVAILABLE if (_ekf_type.get() == 3) { _ekf_type.set(2); EKF2.set_enable(true); } #endif last_active_ekf_type = (EKFType)_ekf_type.get(); // init backends dcm.init(); #if HAL_NMEA_OUTPUT_ENABLED _nmea_out = AP_NMEA_Output::probe(); #endif #if !APM_BUILD_TYPE(APM_BUILD_AP_Periph) // convert to new custom rotaton // PARAMETER_CONVERSION - Added: Nov-2021 if (_board_orientation == ROTATION_CUSTOM_OLD) { _board_orientation.set_and_save(ROTATION_CUSTOM_1); AP_Param::ConversionInfo info; if (AP_Param::find_top_level_key_by_pointer(this, info.old_key)) { info.type = AP_PARAM_FLOAT; float rpy[3] = {}; AP_Float rpy_param; for (info.old_group_element=15; info.old_group_element<=17; info.old_group_element++) { if (AP_Param::find_old_parameter(&info, &rpy_param)) { rpy[info.old_group_element-15] = rpy_param.get(); } } AP::custom_rotations().convert(ROTATION_CUSTOM_1, rpy[0], rpy[1], rpy[2]); } } #endif // !APM_BUILD_TYPE(APM_BUILD_AP_Periph) } // updates matrices responsible for rotating vectors from vehicle body // frame to autopilot body frame from _trim variables void AP_AHRS::update_trim_rotation_matrices() { if (_last_trim == _trim.get()) { // nothing to do return; } _last_trim = _trim.get(); _rotation_autopilot_body_to_vehicle_body.from_euler(_last_trim.x, _last_trim.y, _last_trim.z); _rotation_vehicle_body_to_autopilot_body = _rotation_autopilot_body_to_vehicle_body.transposed(); } // return the smoothed gyro vector corrected for drift const Vector3f &AP_AHRS::get_gyro(void) const { return _gyro_estimate; } const Matrix3f &AP_AHRS::get_rotation_body_to_ned(void) const { return _dcm_matrix; } const Vector3f &AP_AHRS::get_gyro_drift(void) const { return _gyro_drift; } // reset the current gyro drift estimate // should be called if gyro offsets are recalculated void AP_AHRS::reset_gyro_drift(void) { // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); // update DCM dcm.reset_gyro_drift(); // reset the EKF gyro bias states #if HAL_NAVEKF2_AVAILABLE EKF2.resetGyroBias(); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.resetGyroBias(); #endif } void AP_AHRS::update(bool skip_ins_update) { // periodically checks to see if we should update the AHRS // orientation (e.g. based on the AHRS_ORIENTATION parameter) // allow for runtime change of orientation // this makes initial config easier update_orientation(); if (!skip_ins_update) { // tell the IMU to grab some data AP::ins().update(); } // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); // see if we have to restore home after a watchdog reset: if (!_checked_watchdog_home) { load_watchdog_home(); _checked_watchdog_home = true; } // drop back to normal priority if we were boosted by the INS // calling delay_microseconds_boost() hal.scheduler->boost_end(); // update autopilot-body-to-vehicle-body from _trim parameters: update_trim_rotation_matrices(); update_DCM(); // update takeoff/touchdown flags update_flags(); #if AP_AHRS_SIM_ENABLED update_SITL(); #endif #if HAL_EXTERNAL_AHRS_ENABLED update_external(); #endif if (_ekf_type == 2) { // if EK2 is primary then run EKF2 first to give it CPU // priority #if HAL_NAVEKF2_AVAILABLE update_EKF2(); #endif #if HAL_NAVEKF3_AVAILABLE update_EKF3(); #endif } else { // otherwise run EKF3 first #if HAL_NAVEKF3_AVAILABLE update_EKF3(); #endif #if HAL_NAVEKF2_AVAILABLE update_EKF2(); #endif } #if AP_MODULE_SUPPORTED // call AHRS_update hook if any AP_Module::call_hook_AHRS_update(*this); #endif // push gyros if optical flow present if (hal.opticalflow) { const Vector3f &exported_gyro_bias = get_gyro_drift(); hal.opticalflow->push_gyro_bias(exported_gyro_bias.x, exported_gyro_bias.y); } if (_view != nullptr) { // update optional alternative attitude view _view->update(); } // update AOA and SSA update_AOA_SSA(); #if HAL_NMEA_OUTPUT_ENABLED // update NMEA output if (_nmea_out != nullptr) { _nmea_out->update(); } #endif EKFType active = active_EKF_type(); if (active != last_active_ekf_type) { last_active_ekf_type = active; const char *shortname = "???"; switch ((EKFType)active) { case EKFType::NONE: shortname = "DCM"; break; #if AP_AHRS_SIM_ENABLED case EKFType::SIM: shortname = "SIM"; break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: shortname = "External"; break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: shortname = "EKF3"; break; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: shortname = "EKF2"; break; #endif } GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AHRS: %s active", shortname); } } /* * copy results from a backend over AP_AHRS canonical results. * This updates member variables like roll and pitch, as well as * updating derived values like sin_roll and sin_pitch. */ void AP_AHRS::copy_estimates_from_backend_estimates(const AP_AHRS_Backend::Estimates &results) { roll = results.roll_rad; pitch = results.pitch_rad; yaw = results.yaw_rad; _dcm_matrix = results.dcm_matrix; _gyro_estimate = results.gyro_estimate; _gyro_drift = results.gyro_drift; _accel_ef = results.accel_ef; _accel_bias = results.accel_bias; update_cd_values(); update_trig(); } void AP_AHRS::update_DCM() { dcm.update(); dcm.get_results(dcm_estimates); // we always update the vehicle's canonical roll/pitch/yaw from // DCM. In normal operation this will usually be over-written by // an EKF or external AHRS. This is long-held behaviour, but this // really shouldn't be doing this. // if (active_EKF_type() == EKFType::NONE) { copy_estimates_from_backend_estimates(dcm_estimates); // } } void AP_AHRS::update_notify_from_filter_status(const nav_filter_status &status) { AP_Notify::flags.gps_fusion = status.flags.using_gps; // Drives AP_Notify flag for usable GPS. AP_Notify::flags.gps_glitching = status.flags.gps_glitching; AP_Notify::flags.have_pos_abs = status.flags.horiz_pos_abs; } #if HAL_NAVEKF2_AVAILABLE void AP_AHRS::update_EKF2(void) { if (!_ekf2_started) { // wait 1 second for DCM to output a valid tilt error estimate if (start_time_ms == 0) { start_time_ms = AP_HAL::millis(); } // if we're doing Replay logging then don't allow any data // into the EKF yet. Don't allow it to block us for long. if (!hal.util->was_watchdog_reset()) { if (AP_HAL::millis() - start_time_ms < 5000) { if (!AP::logger().allow_start_ekf()) { return; } } } if (AP_HAL::millis() - start_time_ms > startup_delay_ms) { _ekf2_started = EKF2.InitialiseFilter(); } } if (_ekf2_started) { EKF2.UpdateFilter(); if (active_EKF_type() == EKFType::TWO) { Vector3f eulers; EKF2.getRotationBodyToNED(_dcm_matrix); EKF2.getEulerAngles(eulers); roll = eulers.x; pitch = eulers.y; yaw = eulers.z; update_cd_values(); update_trig(); // Use the primary EKF to select the primary gyro const AP_InertialSensor &_ins = AP::ins(); const int8_t primary_imu = EKF2.getPrimaryCoreIMUIndex(); const uint8_t primary_gyro = primary_imu>=0?primary_imu:_ins.get_primary_gyro(); const uint8_t primary_accel = primary_imu>=0?primary_imu:_ins.get_primary_accel(); // get gyro bias for primary EKF and change sign to give gyro drift // Note sign convention used by EKF is bias = measurement - truth _gyro_drift.zero(); EKF2.getGyroBias(_gyro_drift); _gyro_drift = -_gyro_drift; // use the same IMU as the primary EKF and correct for gyro drift _gyro_estimate = _ins.get_gyro(primary_gyro) + _gyro_drift; // get z accel bias estimate from active EKF (this is usually for the primary IMU) float &abias = _accel_bias.z; EKF2.getAccelZBias(abias); // This EKF is currently using primary_imu, and abias applies to only that IMU Vector3f accel = _ins.get_accel(primary_accel); accel.z -= abias; _accel_ef = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * accel; nav_filter_status filt_state; EKF2.getFilterStatus(filt_state); update_notify_from_filter_status(filt_state); } } } #endif #if HAL_NAVEKF3_AVAILABLE void AP_AHRS::update_EKF3(void) { if (!_ekf3_started) { // wait 1 second for DCM to output a valid tilt error estimate if (start_time_ms == 0) { start_time_ms = AP_HAL::millis(); } // if we're doing Replay logging then don't allow any data // into the EKF yet. Don't allow it to block us for long. if (!hal.util->was_watchdog_reset()) { if (AP_HAL::millis() - start_time_ms < 5000) { if (!AP::logger().allow_start_ekf()) { return; } } } if (AP_HAL::millis() - start_time_ms > startup_delay_ms) { _ekf3_started = EKF3.InitialiseFilter(); } } if (_ekf3_started) { EKF3.UpdateFilter(); if (active_EKF_type() == EKFType::THREE) { Vector3f eulers; EKF3.getRotationBodyToNED(_dcm_matrix); EKF3.getEulerAngles(eulers); roll = eulers.x; pitch = eulers.y; yaw = eulers.z; update_cd_values(); update_trig(); const AP_InertialSensor &_ins = AP::ins(); // Use the primary EKF to select the primary gyro const int8_t primary_imu = EKF3.getPrimaryCoreIMUIndex(); const uint8_t primary_gyro = primary_imu>=0?primary_imu:_ins.get_primary_gyro(); const uint8_t primary_accel = primary_imu>=0?primary_imu:_ins.get_primary_accel(); // get gyro bias for primary EKF and change sign to give gyro drift // Note sign convention used by EKF is bias = measurement - truth _gyro_drift.zero(); EKF3.getGyroBias(-1,_gyro_drift); _gyro_drift = -_gyro_drift; // use the same IMU as the primary EKF and correct for gyro drift _gyro_estimate = _ins.get_gyro(primary_gyro) + _gyro_drift; // get 3-axis accel bias festimates for active EKF (this is usually for the primary IMU) Vector3f &abias = _accel_bias; EKF3.getAccelBias(-1,abias); // use the primary IMU for accel earth frame Vector3f accel = _ins.get_accel(primary_accel); accel -= abias; _accel_ef = _dcm_matrix * accel; nav_filter_status filt_state; EKF3.getFilterStatus(filt_state); update_notify_from_filter_status(filt_state); } } } #endif #if AP_AHRS_SIM_ENABLED void AP_AHRS::update_SITL(void) { if (_sitl == nullptr) { _sitl = AP::sitl(); if (_sitl == nullptr) { return; } } const struct SITL::sitl_fdm &fdm = _sitl->state; const AP_InertialSensor &_ins = AP::ins(); if (active_EKF_type() == EKFType::SIM) { fdm.quaternion.rotation_matrix(_dcm_matrix); _dcm_matrix = _dcm_matrix * get_rotation_vehicle_body_to_autopilot_body(); _dcm_matrix.to_euler(&roll, &pitch, &yaw); update_cd_values(); update_trig(); _gyro_drift.zero(); _gyro_estimate = _ins.get_gyro(); const Vector3f &accel = _ins.get_accel(); _accel_ef = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * accel; } #if HAL_NAVEKF3_AVAILABLE if (_sitl->odom_enable) { // use SITL states to write body frame odometry data at 20Hz uint32_t timeStamp_ms = AP_HAL::millis(); if (timeStamp_ms - _last_body_odm_update_ms > 50) { const float quality = 100.0f; const Vector3f posOffset(0.0f, 0.0f, 0.0f); const float delTime = 0.001f * (timeStamp_ms - _last_body_odm_update_ms); _last_body_odm_update_ms = timeStamp_ms; timeStamp_ms -= (timeStamp_ms - _last_body_odm_update_ms)/2; // correct for first order hold average delay Vector3f delAng = _ins.get_gyro(); delAng *= delTime; // rotate earth velocity into body frame and calculate delta position Matrix3f Tbn; Tbn.from_euler(radians(fdm.rollDeg),radians(fdm.pitchDeg),radians(fdm.yawDeg)); const Vector3f earth_vel(fdm.speedN,fdm.speedE,fdm.speedD); const Vector3f delPos = Tbn.transposed() * (earth_vel * delTime); // write to EKF EKF3.writeBodyFrameOdom(quality, delPos, delAng, delTime, timeStamp_ms, 0, posOffset); } } #endif // HAL_NAVEKF3_AVAILABLE } #endif // CONFIG_HAL_BOARD #if HAL_EXTERNAL_AHRS_ENABLED void AP_AHRS::update_external(void) { AP::externalAHRS().update(); if (active_EKF_type() == EKFType::EXTERNAL) { Quaternion quat; if (!AP::externalAHRS().get_quaternion(quat)) { return; } quat.rotation_matrix(_dcm_matrix); _dcm_matrix = _dcm_matrix * get_rotation_vehicle_body_to_autopilot_body(); _dcm_matrix.to_euler(&roll, &pitch, &yaw); update_cd_values(); update_trig(); _gyro_drift.zero(); _gyro_estimate = AP::externalAHRS().get_gyro(); Vector3f accel = AP::externalAHRS().get_accel(); _accel_ef = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * accel; } } #endif // HAL_EXTERNAL_AHRS_ENABLED void AP_AHRS::reset() { // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); dcm.reset(); #if HAL_NAVEKF2_AVAILABLE if (_ekf2_started) { _ekf2_started = EKF2.InitialiseFilter(); } #endif #if HAL_NAVEKF3_AVAILABLE if (_ekf3_started) { _ekf3_started = EKF3.InitialiseFilter(); } #endif } // dead-reckoning support bool AP_AHRS::get_location(struct Location &loc) const { switch (active_EKF_type()) { case EKFType::NONE: return dcm.get_location(loc); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: if (EKF2.getLLH(loc)) { return true; } break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: if (EKF3.getLLH(loc)) { return true; } break; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { if (_sitl) { const struct SITL::sitl_fdm &fdm = _sitl->state; loc = {}; loc.lat = fdm.latitude * 1e7; loc.lng = fdm.longitude * 1e7; loc.alt = fdm.altitude*100; return true; } break; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: { return AP::externalAHRS().get_location(loc); } #endif } // fall back to position from DCM if (!always_use_EKF()) { return dcm.get_location(loc); } return false; } // status reporting of estimated errors float AP_AHRS::get_error_rp(void) const { return dcm.get_error_rp(); } float AP_AHRS::get_error_yaw(void) const { return dcm.get_error_yaw(); } // return a wind estimation vector, in m/s Vector3f AP_AHRS::wind_estimate(void) const { Vector3f wind; switch (active_EKF_type()) { case EKFType::NONE: wind = dcm.wind_estimate(); break; #if AP_AHRS_SIM_ENABLED case EKFType::SIM: if (_sitl) { const auto &fdm = _sitl->state; wind = fdm.wind_ef; } break; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getWind(wind); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getWind(wind); break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: wind.zero(); break; #endif } return wind; } /* return true if a real airspeed sensor is enabled */ bool AP_AHRS::airspeed_sensor_enabled(void) const { if (!dcm.airspeed_sensor_enabled()) { return false; } nav_filter_status filter_status; if (fly_forward && hal.util->get_soft_armed() && get_filter_status(filter_status) && filter_status.flags.rejecting_airspeed) { // special case for when backend is rejecting airspeed data in // an armed fly_forward state. Then the airspeed data is // highly suspect and will be rejected. We will use the // synthentic airspeed instead return false; } return true; } // return an airspeed estimate if available. return true // if we have an estimate bool AP_AHRS::airspeed_estimate(float &airspeed_ret) const { bool ret = false; #if AP_AIRSPEED_ENABLED if (airspeed_sensor_enabled()) { uint8_t idx = get_active_airspeed_index(); airspeed_ret = AP::airspeed()->get_airspeed(idx); if (_wind_max > 0 && AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D) { // constrain the airspeed by the ground speed // and AHRS_WIND_MAX const float gnd_speed = AP::gps().ground_speed(); float true_airspeed = airspeed_ret * get_EAS2TAS(); true_airspeed = constrain_float(true_airspeed, gnd_speed - _wind_max, gnd_speed + _wind_max); airspeed_ret = true_airspeed / get_EAS2TAS(); } return true; } #endif if (!get_wind_estimation_enabled()) { return false; } // estimate it via nav velocity and wind estimates // get wind estimates Vector3f wind_vel; switch (active_EKF_type()) { case EKFType::NONE: return dcm.airspeed_estimate(get_active_airspeed_index(), airspeed_ret); #if AP_AHRS_SIM_ENABLED case EKFType::SIM: if (!_sitl) { return false; } airspeed_ret = _sitl->state.airspeed; return true; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return dcm.airspeed_estimate(get_active_airspeed_index(), airspeed_ret); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: ret = EKF3.getWind(wind_vel); break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } // estimate it via nav velocity and wind estimates Vector3f nav_vel; float true_airspeed; if (ret && have_inertial_nav() && get_velocity_NED(nav_vel)) { Vector3f true_airspeed_vec = nav_vel - wind_vel; true_airspeed = true_airspeed_vec.length(); float gnd_speed = nav_vel.length(); if (_wind_max > 0) { float tas_lim_lower = MAX(0.0f, (gnd_speed - _wind_max)); float tas_lim_upper = MAX(tas_lim_lower, (gnd_speed + _wind_max)); true_airspeed = constrain_float(true_airspeed, tas_lim_lower, tas_lim_upper); } else { true_airspeed = MAX(0.0f, true_airspeed); } airspeed_ret = true_airspeed / get_EAS2TAS(); } else { // fallback to DCM if airspeed estimate if EKF has wind but no velocity estimate ret = dcm.airspeed_estimate(get_active_airspeed_index(), airspeed_ret); } return ret; } bool AP_AHRS::airspeed_estimate_true(float &airspeed_ret) const { switch (active_EKF_type()) { case EKFType::NONE: return dcm.airspeed_estimate_true(airspeed_ret); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: #endif break; } if (!airspeed_estimate(airspeed_ret)) { return false; } airspeed_ret *= get_EAS2TAS(); return true; } // return estimate of true airspeed vector in body frame in m/s // returns false if estimate is unavailable bool AP_AHRS::airspeed_vector_true(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getAirSpdVec(vec); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getAirSpdVec(vec); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: break; #endif } return false; } // return the innovation in m/s, innovation variance in (m/s)^2 and age in msec of the last TAS measurement processed // returns false if the data is unavailable bool AP_AHRS::airspeed_health_data(float &innovation, float &innovationVariance, uint32_t &age_ms) const { switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getAirSpdHealthData(innovation, innovationVariance, age_ms); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: break; #endif } return false; } // return a synthetic airspeed estimate (one derived from sensors // other than an actual airspeed sensor), if available. return // true if we have a synthetic airspeed. ret will not be modified // on failure. bool AP_AHRS::synthetic_airspeed(float &ret) const { return dcm.synthetic_airspeed(ret); } // true if compass is being used bool AP_AHRS::use_compass(void) { switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.use_compass(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.use_compass(); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return true; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: // fall through break; #endif } return dcm.use_compass(); } // return the quaternion defining the rotation from NED to XYZ (body) axes bool AP_AHRS::get_quaternion(Quaternion &quat) const { // backends always return in autopilot XYZ frame; rotate result // according to trim switch (active_EKF_type()) { case EKFType::NONE: if (!dcm.get_quaternion(quat)) { return false; } break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: if (!_ekf2_started) { return false; } EKF2.getQuaternion(quat); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: if (!_ekf3_started) { return false; } EKF3.getQuaternion(quat); break; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; quat = fdm.quaternion; break; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: // we assume the external AHRS isn't trimmed with the autopilot! return AP::externalAHRS().get_quaternion(quat); #endif } quat.rotate(-_trim.get()); return true; } // return secondary attitude solution if available, as eulers in radians bool AP_AHRS::get_secondary_attitude(Vector3f &eulers) const { EKFType secondary_ekf_type; if (!get_secondary_EKF_type(secondary_ekf_type)) { return false; } switch (secondary_ekf_type) { case EKFType::NONE: // DCM is secondary eulers[0] = dcm_estimates.roll_rad; eulers[1] = dcm_estimates.pitch_rad; eulers[2] = dcm_estimates.yaw_rad; return true; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // EKF2 is secondary EKF2.getEulerAngles(eulers); return _ekf2_started; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // EKF3 is secondary EKF3.getEulerAngles(eulers); return _ekf3_started; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: // SITL is secondary (should never happen) return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: { // External is secondary Quaternion quat; if (!AP::externalAHRS().get_quaternion(quat)) { return false; } quat.to_euler(eulers.x, eulers.y, eulers.z); return true; } #endif } // since there is no default case above, this is unreachable return false; } // return secondary attitude solution if available, as quaternion bool AP_AHRS::get_secondary_quaternion(Quaternion &quat) const { EKFType secondary_ekf_type; if (!get_secondary_EKF_type(secondary_ekf_type)) { return false; } switch (secondary_ekf_type) { case EKFType::NONE: // DCM is secondary if (!dcm.get_quaternion(quat)) { return false; } break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // EKF2 is secondary if (!_ekf2_started) { return false; } EKF2.getQuaternion(quat); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // EKF3 is secondary if (!_ekf3_started) { return false; } EKF3.getQuaternion(quat); break; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: // SITL is secondary (should never happen) return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: // External is secondary return AP::externalAHRS().get_quaternion(quat); #endif } quat.rotate(-_trim.get()); return true; } // return secondary position solution if available bool AP_AHRS::get_secondary_position(struct Location &loc) const { EKFType secondary_ekf_type; if (!get_secondary_EKF_type(secondary_ekf_type)) { return false; } switch (secondary_ekf_type) { case EKFType::NONE: // return DCM position dcm.get_location(loc); return true; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // EKF2 is secondary EKF2.getLLH(loc); return _ekf2_started; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // EKF3 is secondary EKF3.getLLH(loc); return _ekf3_started; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: // SITL is secondary (should never happen) return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: // External is secondary return AP::externalAHRS().get_location(loc); #endif } // since there is no default case above, this is unreachable return false; } // EKF has a better ground speed vector estimate Vector2f AP_AHRS::groundspeed_vector(void) { Vector3f vec; switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getVelNED(vec); return vec.xy(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getVelNED(vec); return vec.xy(); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { if (_sitl) { const struct SITL::sitl_fdm &fdm = _sitl->state; return Vector2f(fdm.speedN, fdm.speedE); } break; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: { return AP::externalAHRS().get_groundspeed_vector(); } #endif } return dcm.groundspeed_vector(); } float AP_AHRS::groundspeed(void) { switch (active_EKF_type()) { case EKFType::NONE: return dcm.groundspeed(); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: #endif break; } return groundspeed_vector().length(); } // set the EKF's origin location in 10e7 degrees. This should only // be called when the EKF has no absolute position reference (i.e. GPS) // from which to decide the origin on its own bool AP_AHRS::set_origin(const Location &loc) { WITH_SEMAPHORE(_rsem); #if HAL_NAVEKF2_AVAILABLE const bool ret2 = EKF2.setOriginLLH(loc); #endif #if HAL_NAVEKF3_AVAILABLE const bool ret3 = EKF3.setOriginLLH(loc); #endif // return success if active EKF's origin was set switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return ret2; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return ret3; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: // never allow origin set in SITL. The origin is set by the // simulation backend return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: // don't allow origin set with external AHRS return false; #endif } // since there is no default case above, this is unreachable return false; } // return true if inertial navigation is active bool AP_AHRS::have_inertial_nav(void) const { return active_EKF_type() != EKFType::NONE; } // return a ground velocity in meters/second, North/East/Down // order. Must only be called if have_inertial_nav() is true bool AP_AHRS::get_velocity_NED(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getVelNED(vec); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getVelNED(vec); return true; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; vec = Vector3f(fdm.speedN, fdm.speedE, fdm.speedD); return true; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return AP::externalAHRS().get_velocity_NED(vec); #endif } return dcm.get_velocity_NED(vec); } // returns the expected NED magnetic field bool AP_AHRS::get_mag_field_NED(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getMagNED(vec); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getMagNED(vec); return true; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } return false; } // returns the estimated magnetic field offsets in body frame bool AP_AHRS::get_mag_field_correction(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getMagXYZ(vec); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getMagXYZ(vec); return true; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } // since there is no default case above, this is unreachable return false; } // Get a derivative of the vertical position which is kinematically consistent with the vertical position is required by some control loops. // This is different to the vertical velocity from the EKF which is not always consistent with the verical position due to the various errors that are being corrected for. bool AP_AHRS::get_vert_pos_rate(float &velocity) const { switch (active_EKF_type()) { case EKFType::NONE: return dcm.get_vert_pos_rate(velocity); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: velocity = EKF2.getPosDownDerivative(); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: velocity = EKF3.getPosDownDerivative(); return true; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: if (_sitl) { const struct SITL::sitl_fdm &fdm = _sitl->state; velocity = fdm.speedD; return true; } else { return false; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return AP::externalAHRS().get_speed_down(velocity); #endif } // since there is no default case above, this is unreachable return false; } // get latest height above ground level estimate in metres and a validity flag bool AP_AHRS::get_hagl(float &height) const { switch (active_EKF_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getHAGL(height); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getHAGL(height); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; height = fdm.altitude - get_home().alt*0.01f; return true; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: { return false; } #endif } // since there is no default case above, this is unreachable return false; } // return a relative ground position to the origin in meters // North/East/Down order. bool AP_AHRS::get_relative_position_NED_origin(Vector3f &vec) const { switch (active_EKF_type()) { case EKFType::NONE: return dcm.get_relative_position_NED_origin(vec); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { Vector2f posNE; float posD; if (EKF2.getPosNE(posNE) && EKF2.getPosD(posD)) { // position is valid vec.x = posNE.x; vec.y = posNE.y; vec.z = posD; return true; } return false; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { Vector2f posNE; float posD; if (EKF3.getPosNE(posNE) && EKF3.getPosD(posD)) { // position is valid vec.x = posNE.x; vec.y = posNE.y; vec.z = posD; return true; } return false; } #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { if (!_sitl) { return false; } Location loc, orgn; if (!get_location(loc) || !get_origin(orgn)) { return false; } const Vector2f diff2d = orgn.get_distance_NE(loc); const struct SITL::sitl_fdm &fdm = _sitl->state; vec = Vector3f(diff2d.x, diff2d.y, -(fdm.altitude - orgn.alt*0.01f)); return true; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: { auto &extahrs = AP::externalAHRS(); Location loc, orgn; if (extahrs.get_origin(orgn) && extahrs.get_location(loc)) { const Vector2f diff2d = orgn.get_distance_NE(loc); vec = Vector3f(diff2d.x, diff2d.y, -(loc.alt - orgn.alt)*0.01); return true; } return false; } #endif } // since there is no default case above, this is unreachable return false; } // return a relative ground position to the home in meters // North/East/Down order. bool AP_AHRS::get_relative_position_NED_home(Vector3f &vec) const { Location originLLH; Vector3f originNED; if (!get_relative_position_NED_origin(originNED) || !get_origin(originLLH)) { return false; } const Vector3f offset = originLLH.get_distance_NED(_home); vec.x = originNED.x - offset.x; vec.y = originNED.y - offset.y; vec.z = originNED.z - offset.z; return true; } // write a relative ground position estimate to the origin in meters, North/East order // return true if estimate is valid bool AP_AHRS::get_relative_position_NE_origin(Vector2f &posNE) const { switch (active_EKF_type()) { case EKFType::NONE: return dcm.get_relative_position_NE_origin(posNE); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { bool position_is_valid = EKF2.getPosNE(posNE); return position_is_valid; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { bool position_is_valid = EKF3.getPosNE(posNE); return position_is_valid; } #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { Location loc, orgn; if (!get_location(loc) || !get_origin(orgn)) { return false; } posNE = orgn.get_distance_NE(loc); return true; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: { Location loc, orgn; if (!get_location(loc) || !get_origin(orgn)) { return false; } posNE = orgn.get_distance_NE(loc); return true; } #endif } // since there is no default case above, this is unreachable return false; } // return a relative ground position to the home in meters // North/East order. bool AP_AHRS::get_relative_position_NE_home(Vector2f &posNE) const { Location originLLH; Vector2f originNE; if (!get_relative_position_NE_origin(originNE) || !get_origin(originLLH)) { return false; } const Vector2f offset = originLLH.get_distance_NE(_home); posNE.x = originNE.x - offset.x; posNE.y = originNE.y - offset.y; return true; } // write a relative ground position estimate to the origin in meters, North/East order // write a relative ground position to the origin in meters, Down // return true if the estimate is valid bool AP_AHRS::get_relative_position_D_origin(float &posD) const { switch (active_EKF_type()) { case EKFType::NONE: return dcm.get_relative_position_D_origin(posD); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { bool position_is_valid = EKF2.getPosD(posD); return position_is_valid; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { bool position_is_valid = EKF3.getPosD(posD); return position_is_valid; } #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; Location orgn; if (!get_origin(orgn)) { return false; } posD = -(fdm.altitude - orgn.alt*0.01f); return true; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: { Location orgn, loc; if (!get_origin(orgn) || !get_location(loc)) { return false; } posD = -(loc.alt - orgn.alt)*0.01; return true; } #endif } // since there is no default case above, this is unreachable return false; } // write a relative ground position to home in meters, Down // will use the barometer if the EKF isn't available void AP_AHRS::get_relative_position_D_home(float &posD) const { Location originLLH; float originD; if (!get_relative_position_D_origin(originD) || !get_origin(originLLH)) { const auto &gps = AP::gps(); if (_gps_use == GPSUse::EnableWithHeight && gps.status() >= AP_GPS::GPS_OK_FIX_3D) { posD = (get_home().alt - gps.location().alt) * 0.01; } else { posD = -AP::baro().get_altitude(); } return; } posD = originD - ((originLLH.alt - _home.alt) * 0.01f); return; } /* canonicalise _ekf_type, forcing it to be 0, 2 or 3 type 1 has been deprecated */ AP_AHRS::EKFType AP_AHRS::ekf_type(void) const { EKFType type = (EKFType)_ekf_type.get(); switch (type) { #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return type; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return type; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return type; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return type; #endif case EKFType::NONE: if (always_use_EKF()) { #if HAL_NAVEKF2_AVAILABLE return EKFType::TWO; #elif HAL_NAVEKF3_AVAILABLE return EKFType::THREE; #endif } return EKFType::NONE; } // we can get to here if the user has mis-set AHRS_EKF_TYPE - any // value above 3 will get to here. TWO is returned here for no // better reason than "tradition". #if HAL_NAVEKF2_AVAILABLE return EKFType::TWO; #elif HAL_NAVEKF3_AVAILABLE return EKFType::THREE; #else return EKFType::NONE; #endif } AP_AHRS::EKFType AP_AHRS::active_EKF_type(void) const { EKFType ret = EKFType::NONE; switch (ekf_type()) { case EKFType::NONE: return EKFType::NONE; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { // do we have an EKF2 yet? if (!_ekf2_started) { return EKFType::NONE; } if (always_use_EKF()) { uint16_t ekf2_faults; EKF2.getFilterFaults(ekf2_faults); if (ekf2_faults == 0) { ret = EKFType::TWO; } } else if (EKF2.healthy()) { ret = EKFType::TWO; } break; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { // do we have an EKF3 yet? if (!_ekf3_started) { return EKFType::NONE; } if (always_use_EKF()) { uint16_t ekf3_faults; EKF3.getFilterFaults(ekf3_faults); if (ekf3_faults == 0) { ret = EKFType::THREE; } } else if (EKF3.healthy()) { ret = EKFType::THREE; } break; } #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: ret = EKFType::SIM; break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: ret = EKFType::EXTERNAL; break; #endif } /* fixed wing and rover will fall back to DCM if the EKF doesn't have GPS. This is the safest option as DCM is very robust. Note that we also check the filter status when fly_forward is false and we are disarmed. This is to ensure that the arming checks do wait for good GPS position on fixed wing and rover */ if (ret != EKFType::NONE && (_vehicle_class == VehicleClass::FIXED_WING || _vehicle_class == VehicleClass::GROUND)) { bool should_use_gps = true; nav_filter_status filt_state; #if HAL_NAVEKF2_AVAILABLE if (ret == EKFType::TWO) { EKF2.getFilterStatus(filt_state); should_use_gps = EKF2.configuredToUseGPSForPosXY(); } #endif #if HAL_NAVEKF3_AVAILABLE if (ret == EKFType::THREE) { EKF3.getFilterStatus(filt_state); should_use_gps = EKF3.configuredToUseGPSForPosXY(); } #endif #if AP_AHRS_SIM_ENABLED if (ret == EKFType::SIM) { get_filter_status(filt_state); } #endif #if HAL_EXTERNAL_AHRS_ENABLED if (ret == EKFType::EXTERNAL) { get_filter_status(filt_state); should_use_gps = true; } #endif if (hal.util->get_soft_armed() && (!filt_state.flags.using_gps || !filt_state.flags.horiz_pos_abs) && should_use_gps && AP::gps().status() >= AP_GPS::GPS_OK_FIX_3D) { // if the EKF is not fusing GPS or doesn't have a 2D fix // and we have a 3D lock, then plane and rover would // prefer to use the GPS position from DCM. This is a // safety net while some issues with the EKF get sorted // out return EKFType::NONE; } if (hal.util->get_soft_armed() && filt_state.flags.const_pos_mode) { return EKFType::NONE; } if (!filt_state.flags.attitude || !filt_state.flags.vert_vel || !filt_state.flags.vert_pos) { return EKFType::NONE; } if (!filt_state.flags.horiz_vel || (!filt_state.flags.horiz_pos_abs && !filt_state.flags.horiz_pos_rel)) { if ((!AP::compass().use_for_yaw()) && AP::gps().status() >= AP_GPS::GPS_OK_FIX_3D && AP::gps().ground_speed() < 2) { /* special handling for non-compass mode when sitting still. The EKF may not yet have aligned its yaw. We accept EKF as healthy to allow arming. Once we reach speed the EKF should get yaw alignment */ if (filt_state.flags.gps_quality_good) { return ret; } } return EKFType::NONE; } } return ret; } // get secondary EKF type. returns false if no secondary (i.e. only using DCM) bool AP_AHRS::get_secondary_EKF_type(EKFType &secondary_ekf_type) const { switch (active_EKF_type()) { case EKFType::NONE: // EKF2, EKF3 or External is secondary #if HAL_NAVEKF3_AVAILABLE if ((EKFType)_ekf_type.get() == EKFType::THREE) { secondary_ekf_type = EKFType::THREE; return true; } #endif #if HAL_NAVEKF2_AVAILABLE if ((EKFType)_ekf_type.get() == EKFType::TWO) { secondary_ekf_type = EKFType::TWO; return true; } #endif #if HAL_EXTERNAL_AHRS_ENABLED if ((EKFType)_ekf_type.get() == EKFType::EXTERNAL) { secondary_ekf_type = EKFType::EXTERNAL; return true; } #endif return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: #endif // DCM is secondary secondary_ekf_type = EKFType::NONE; return true; } // since there is no default case above, this is unreachable return false; } /* check if the AHRS subsystem is healthy */ bool AP_AHRS::healthy(void) const { // If EKF is started we switch away if it reports unhealthy. This could be due to bad // sensor data. If EKF reversion is inhibited, we only switch across if the EKF encounters // an internal processing error, but not for bad sensor data. switch (ekf_type()) { case EKFType::NONE: return dcm.healthy(); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { bool ret = _ekf2_started && EKF2.healthy(); if (!ret) { return false; } if ((_vehicle_class == VehicleClass::FIXED_WING || _vehicle_class == VehicleClass::GROUND) && active_EKF_type() != EKFType::TWO) { // on fixed wing we want to be using EKF to be considered // healthy if EKF is enabled return false; } return true; } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { bool ret = _ekf3_started && EKF3.healthy(); if (!ret) { return false; } if ((_vehicle_class == VehicleClass::FIXED_WING || _vehicle_class == VehicleClass::GROUND) && active_EKF_type() != EKFType::THREE) { // on fixed wing we want to be using EKF to be considered // healthy if EKF is enabled return false; } return true; } #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return true; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return AP::externalAHRS().healthy(); #endif } return dcm.healthy(); } // returns false if we fail arming checks, in which case the buffer will be populated with a failure message // requires_position should be true if horizontal position configuration should be checked bool AP_AHRS::pre_arm_check(bool requires_position, char *failure_msg, uint8_t failure_msg_len) const { bool ret = true; if (!healthy()) { // this rather generic failure might be overwritten by // something more specific in the "backend" hal.util->snprintf(failure_msg, failure_msg_len, "Not healthy"); ret = false; } if (!attitudes_consistent(failure_msg, failure_msg_len)) { return false; } // ensure we're using the configured backend, but bypass in compass-less cases: if (ekf_type() != active_EKF_type() && AP::compass().use_for_yaw()) { hal.util->snprintf(failure_msg, failure_msg_len, "not using configured AHRS type"); return false; } switch (ekf_type()) { #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return ret; #endif case EKFType::NONE: return dcm.pre_arm_check(requires_position, failure_msg, failure_msg_len) && ret; #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return AP::externalAHRS().pre_arm_check(failure_msg, failure_msg_len) && ret; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: if (!_ekf2_started) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 not started"); return false; } return EKF2.pre_arm_check(failure_msg, failure_msg_len) && ret; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: if (!_ekf3_started) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 not started"); return false; } return EKF3.pre_arm_check(requires_position, failure_msg, failure_msg_len) && ret; #endif } // if we get here then ekf type is invalid hal.util->snprintf(failure_msg, failure_msg_len, "invalid EKF type"); return false; } // true if the AHRS has completed initialisation bool AP_AHRS::initialised(void) const { switch (ekf_type()) { case EKFType::NONE: return true; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // initialisation complete 10sec after ekf has started return (_ekf2_started && (AP_HAL::millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS)); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // initialisation complete 10sec after ekf has started return (_ekf3_started && (AP_HAL::millis() - start_time_ms > AP_AHRS_NAVEKF_SETTLE_TIME_MS)); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return true; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return AP::externalAHRS().initialised(); #endif } return false; }; // get_filter_status : returns filter status as a series of flags bool AP_AHRS::get_filter_status(nav_filter_status &status) const { switch (ekf_type()) { case EKFType::NONE: return dcm.get_filter_status(status); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getFilterStatus(status); return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getFilterStatus(status); return true; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: memset(&status, 0, sizeof(status)); status.flags.attitude = 1; status.flags.horiz_vel = 1; status.flags.vert_vel = 1; status.flags.horiz_pos_rel = 1; status.flags.horiz_pos_abs = 1; status.flags.vert_pos = 1; status.flags.pred_horiz_pos_rel = 1; status.flags.pred_horiz_pos_abs = 1; status.flags.using_gps = 1; return true; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: AP::externalAHRS().get_filter_status(status); return true; #endif } return false; } // write optical flow data to EKF void AP_AHRS::writeOptFlowMeas(const uint8_t rawFlowQuality, const Vector2f &rawFlowRates, const Vector2f &rawGyroRates, const uint32_t msecFlowMeas, const Vector3f &posOffset, float heightOverride) { #if HAL_NAVEKF2_AVAILABLE EKF2.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas, posOffset, heightOverride); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.writeOptFlowMeas(rawFlowQuality, rawFlowRates, rawGyroRates, msecFlowMeas, posOffset, heightOverride); #endif } // retrieve latest corrected optical flow samples (used for calibration) bool AP_AHRS::getOptFlowSample(uint32_t& timeStamp_ms, Vector2f& flowRate, Vector2f& bodyRate, Vector2f& losPred) const { #if HAL_NAVEKF3_AVAILABLE return EKF3.getOptFlowSample(timeStamp_ms, flowRate, bodyRate, losPred); #endif return false; } // write body frame odometry measurements to the EKF void AP_AHRS::writeBodyFrameOdom(float quality, const Vector3f &delPos, const Vector3f &delAng, float delTime, uint32_t timeStamp_ms, uint16_t delay_ms, const Vector3f &posOffset) { #if HAL_NAVEKF3_AVAILABLE EKF3.writeBodyFrameOdom(quality, delPos, delAng, delTime, timeStamp_ms, delay_ms, posOffset); #endif } // Write position and quaternion data from an external navigation system void AP_AHRS::writeExtNavData(const Vector3f &pos, const Quaternion &quat, float posErr, float angErr, uint32_t timeStamp_ms, uint16_t delay_ms, uint32_t resetTime_ms) { #if HAL_NAVEKF2_AVAILABLE EKF2.writeExtNavData(pos, quat, posErr, angErr, timeStamp_ms, delay_ms, resetTime_ms); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.writeExtNavData(pos, quat, posErr, angErr, timeStamp_ms, delay_ms, resetTime_ms); #endif } // Writes the default equivalent airspeed and 1-sigma uncertainty in m/s to be used in forward flight if a measured airspeed is required and not available. void AP_AHRS::writeDefaultAirSpeed(float airspeed, float uncertainty) { #if HAL_NAVEKF2_AVAILABLE EKF2.writeDefaultAirSpeed(airspeed); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.writeDefaultAirSpeed(airspeed, uncertainty); #endif } // Write velocity data from an external navigation system void AP_AHRS::writeExtNavVelData(const Vector3f &vel, float err, uint32_t timeStamp_ms, uint16_t delay_ms) { #if HAL_NAVEKF2_AVAILABLE EKF2.writeExtNavVelData(vel, err, timeStamp_ms, delay_ms); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.writeExtNavVelData(vel, err, timeStamp_ms, delay_ms); #endif } // get speed limit and XY navigation gain scale factor void AP_AHRS::getControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const { switch (active_EKF_type()) { case EKFType::NONE: // lower gains in VTOL controllers when flying on DCM ekfGndSpdLimit = 50.0; ekfNavVelGainScaler = 0.5; break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.getEkfControlLimits(ekfGndSpdLimit,ekfNavVelGainScaler); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.getEkfControlLimits(ekfGndSpdLimit,ekfNavVelGainScaler); break; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: // same as EKF2 for no optical flow ekfGndSpdLimit = 400.0f; ekfNavVelGainScaler = 1.0f; break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: // no limit on gains, large vel limit ekfGndSpdLimit = 400; ekfNavVelGainScaler = 1; break; #endif } } /* get gain factor for Z controllers */ float AP_AHRS::getControlScaleZ(void) const { if (active_EKF_type() == EKFType::NONE) { // when flying on DCM lower gains by 4x to cope with the high // lag return 0.25; } return 1; } // get compass offset estimates // true if offsets are valid bool AP_AHRS::getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const { switch (ekf_type()) { case EKFType::NONE: return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getMagOffsets(mag_idx, magOffsets); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getMagOffsets(mag_idx, magOffsets); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: magOffsets.zero(); return true; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } // since there is no default case above, this is unreachable return false; } // Retrieves the NED delta velocity corrected void AP_AHRS::getCorrectedDeltaVelocityNED(Vector3f& ret, float& dt) const { int8_t imu_idx = -1; Vector3f accel_bias; switch (active_EKF_type()) { case EKFType::NONE: break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: imu_idx = EKF2.getPrimaryCoreIMUIndex(); EKF2.getAccelZBias(accel_bias.z); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: imu_idx = EKF3.getPrimaryCoreIMUIndex(); EKF3.getAccelBias(-1,accel_bias); break; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: break; #endif } if (imu_idx == -1) { dcm.getCorrectedDeltaVelocityNED(ret, dt); return; } ret.zero(); AP::ins().get_delta_velocity((uint8_t)imu_idx, ret, dt); ret -= accel_bias*dt; ret = _dcm_matrix * get_rotation_autopilot_body_to_vehicle_body() * ret; ret.z += GRAVITY_MSS*dt; } // check all cores providing consistent attitudes for prearm checks bool AP_AHRS::attitudes_consistent(char *failure_msg, const uint8_t failure_msg_len) const { // get primary attitude source's attitude as quaternion Quaternion primary_quat; get_quat_body_to_ned(primary_quat); // only check yaw if compasses are being used const bool check_yaw = AP::compass().use_for_yaw(); uint8_t total_ekf_cores = 0; #if HAL_NAVEKF2_AVAILABLE // check primary vs ekf2 if (ekf_type() == EKFType::TWO || active_EKF_type() == EKFType::TWO) { for (uint8_t i = 0; i < EKF2.activeCores(); i++) { Quaternion ekf2_quat; EKF2.getQuaternionBodyToNED(i, ekf2_quat); // check roll and pitch difference const float rp_diff_rad = primary_quat.roll_pitch_difference(ekf2_quat); if (rp_diff_rad > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 Roll/Pitch inconsistent by %d deg", (int)degrees(rp_diff_rad)); return false; } // check yaw difference Vector3f angle_diff; primary_quat.angular_difference(ekf2_quat).to_axis_angle(angle_diff); const float yaw_diff = fabsf(angle_diff.z); if (check_yaw && (yaw_diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF2 Yaw inconsistent by %d deg", (int)degrees(yaw_diff)); return false; } } total_ekf_cores = EKF2.activeCores(); } #endif #if HAL_NAVEKF3_AVAILABLE // check primary vs ekf3 if (ekf_type() == EKFType::THREE || active_EKF_type() == EKFType::THREE) { for (uint8_t i = 0; i < EKF3.activeCores(); i++) { Quaternion ekf3_quat; EKF3.getQuaternionBodyToNED(i, ekf3_quat); // check roll and pitch difference const float rp_diff_rad = primary_quat.roll_pitch_difference(ekf3_quat); if (rp_diff_rad > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 Roll/Pitch inconsistent by %d deg", (int)degrees(rp_diff_rad)); return false; } // check yaw difference Vector3f angle_diff; primary_quat.angular_difference(ekf3_quat).to_axis_angle(angle_diff); const float yaw_diff = fabsf(angle_diff.z); if (check_yaw && (yaw_diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { hal.util->snprintf(failure_msg, failure_msg_len, "EKF3 Yaw inconsistent by %d deg", (int)degrees(yaw_diff)); return false; } } total_ekf_cores += EKF3.activeCores(); } #endif // check primary vs dcm if (!always_use_EKF() || (total_ekf_cores == 1)) { Quaternion dcm_quat; dcm_quat.from_rotation_matrix(get_DCM_rotation_body_to_ned()); // check roll and pitch difference const float rp_diff_rad = primary_quat.roll_pitch_difference(dcm_quat); if (rp_diff_rad > ATTITUDE_CHECK_THRESH_ROLL_PITCH_RAD) { hal.util->snprintf(failure_msg, failure_msg_len, "DCM Roll/Pitch inconsistent by %d deg", (int)degrees(rp_diff_rad)); return false; } // Check vs DCM yaw if this vehicle could use DCM in flight // and if not using an external yaw source (DCM does not support external yaw sources) bool using_noncompass_for_yaw = false; #if HAL_NAVEKF3_AVAILABLE using_noncompass_for_yaw = (ekf_type() == EKFType::THREE) && EKF3.using_noncompass_for_yaw(); #endif if (!always_use_EKF() && !using_noncompass_for_yaw) { Vector3f angle_diff; primary_quat.angular_difference(dcm_quat).to_axis_angle(angle_diff); const float yaw_diff = fabsf(angle_diff.z); if (check_yaw && (yaw_diff > ATTITUDE_CHECK_THRESH_YAW_RAD)) { hal.util->snprintf(failure_msg, failure_msg_len, "DCM Yaw inconsistent by %d deg", (int)degrees(yaw_diff)); return false; } } } return true; } // return the amount of yaw angle change due to the last yaw angle reset in radians // returns the time of the last yaw angle reset or 0 if no reset has ever occurred uint32_t AP_AHRS::getLastYawResetAngle(float &yawAng) { switch (active_EKF_type()) { case EKFType::NONE: return dcm.getLastYawResetAngle(yawAng); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLastYawResetAngle(yawAng); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLastYawResetAngle(yawAng); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return 0; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return 0; #endif } return 0; } // return the amount of NE position change in metres due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred uint32_t AP_AHRS::getLastPosNorthEastReset(Vector2f &pos) { switch (active_EKF_type()) { case EKFType::NONE: return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLastPosNorthEastReset(pos); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLastPosNorthEastReset(pos); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return 0; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return 0; #endif } return 0; } // return the amount of NE velocity change in metres/sec due to the last reset // returns the time of the last reset or 0 if no reset has ever occurred uint32_t AP_AHRS::getLastVelNorthEastReset(Vector2f &vel) const { switch (active_EKF_type()) { case EKFType::NONE: return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLastVelNorthEastReset(vel); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLastVelNorthEastReset(vel); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return 0; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return 0; #endif } return 0; } // return the amount of vertical position change due to the last reset in meters // returns the time of the last reset or 0 if no reset has ever occurred uint32_t AP_AHRS::getLastPosDownReset(float &posDelta) { switch (active_EKF_type()) { case EKFType::NONE: return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getLastPosDownReset(posDelta); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getLastPosDownReset(posDelta); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return 0; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return 0; #endif } return 0; } // Resets the baro so that it reads zero at the current height // Resets the EKF height to zero // Adjusts the EKf origin height so that the EKF height + origin height is the same as before // Returns true if the height datum reset has been performed // If using a range finder for height no reset is performed and it returns false bool AP_AHRS::resetHeightDatum(void) { // support locked access functions to AHRS data WITH_SEMAPHORE(_rsem); switch (ekf_type()) { case EKFType::NONE: #if HAL_NAVEKF3_AVAILABLE EKF3.resetHeightDatum(); #endif #if HAL_NAVEKF2_AVAILABLE EKF2.resetHeightDatum(); #endif return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #if HAL_NAVEKF3_AVAILABLE EKF3.resetHeightDatum(); #endif return EKF2.resetHeightDatum(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: #if HAL_NAVEKF2_AVAILABLE EKF2.resetHeightDatum(); #endif return EKF3.resetHeightDatum(); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } return false; } // send a EKF_STATUS_REPORT for current EKF void AP_AHRS::send_ekf_status_report(GCS_MAVLINK &link) const { switch (ekf_type()) { case EKFType::NONE: // send zero status report dcm.send_ekf_status_report(link); break; #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { // send status report with everything looking good const uint16_t flags = EKF_ATTITUDE | /* Set if EKF's attitude estimate is good. | */ EKF_VELOCITY_HORIZ | /* Set if EKF's horizontal velocity estimate is good. | */ EKF_VELOCITY_VERT | /* Set if EKF's vertical velocity estimate is good. | */ EKF_POS_HORIZ_REL | /* Set if EKF's horizontal position (relative) estimate is good. | */ EKF_POS_HORIZ_ABS | /* Set if EKF's horizontal position (absolute) estimate is good. | */ EKF_POS_VERT_ABS | /* Set if EKF's vertical position (absolute) estimate is good. | */ EKF_POS_VERT_AGL | /* Set if EKF's vertical position (above ground) estimate is good. | */ //EKF_CONST_POS_MODE | /* EKF is in constant position mode and does not know it's absolute or relative position. | */ EKF_PRED_POS_HORIZ_REL | /* Set if EKF's predicted horizontal position (relative) estimate is good. | */ EKF_PRED_POS_HORIZ_ABS; /* Set if EKF's predicted horizontal position (absolute) estimate is good. | */ mavlink_msg_ekf_status_report_send(link.get_chan(), flags, 0, 0, 0, 0, 0, 0); } break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: { AP::externalAHRS().send_status_report(link); break; } #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.send_status_report(link); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.send_status_report(link); #endif } } // passes a reference to the location of the inertial navigation origin // in WGS-84 coordinates // returns a boolean true when the inertial navigation origin has been set bool AP_AHRS::get_origin(Location &ret) const { switch (ekf_type()) { case EKFType::NONE: return dcm.get_origin(ret); #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: if (!EKF2.getOriginLLH(ret)) { return false; } return true; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: if (!EKF3.getOriginLLH(ret)) { return false; } return true; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: { if (!_sitl) { return false; } const struct SITL::sitl_fdm &fdm = _sitl->state; ret = fdm.home; return true; } #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return AP::externalAHRS().get_origin(ret); #endif } return false; } // get_hgt_ctrl_limit - get maximum height to be observed by the control loops in metres and a validity flag // this is used to limit height during optical flow navigation // it will return false when no limiting is required bool AP_AHRS::get_hgt_ctrl_limit(float& limit) const { switch (ekf_type()) { case EKFType::NONE: // We are not using an EKF so no limiting applies return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getHeightControlLimit(limit); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getHeightControlLimit(limit); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } return false; } // Set to true if the terrain underneath is stable enough to be used as a height reference // this is not related to terrain following void AP_AHRS::set_terrain_hgt_stable(bool stable) { // avoid repeatedly setting variable in NavEKF objects to prevent // spurious event logging switch (terrainHgtStableState) { case TriState::UNKNOWN: break; case TriState::True: if (stable) { return; } break; case TriState::False: if (!stable) { return; } break; } terrainHgtStableState = (TriState)stable; #if HAL_NAVEKF2_AVAILABLE EKF2.setTerrainHgtStable(stable); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.setTerrainHgtStable(stable); #endif } // return the innovations for the primariy EKF // boolean false is returned if innovations are not available bool AP_AHRS::get_innovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const { switch (ekf_type()) { case EKFType::NONE: // We are not using an EKF so no data return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // use EKF to get innovations return EKF2.getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // use EKF to get innovations return EKF3.getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: velInnov.zero(); posInnov.zero(); magInnov.zero(); tasInnov = 0.0f; yawInnov = 0.0f; return true; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } return false; } // returns true when the state estimates are significantly degraded by vibration bool AP_AHRS::is_vibration_affected() const { switch (ekf_type()) { #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.isVibrationAffected(); #endif case EKFType::NONE: #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: #endif return false; } return false; } // get_variances - provides the innovations normalised using the innovation variance where a value of 0 // indicates prefect consistency between the measurement and the EKF solution and a value of 1 is the maximum // inconsistency that will be accpeted by the filter // boolean false is returned if variances are not available bool AP_AHRS::get_variances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar) const { switch (ekf_type()) { case EKFType::NONE: // We are not using an EKF so no data return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: { // use EKF to get variance Vector2f offset; return EKF2.getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); } #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: { // use EKF to get variance Vector2f offset; return EKF3.getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); } #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: velVar = 0; posVar = 0; hgtVar = 0; magVar.zero(); tasVar = 0; return true; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } return false; } // get a source's velocity innovations. source should be from 0 to 7 (see AP_NavEKF_Source::SourceXY) // returns true on success and results are placed in innovations and variances arguments bool AP_AHRS::get_vel_innovations_and_variances_for_source(uint8_t source, Vector3f &innovations, Vector3f &variances) const { switch (ekf_type()) { case EKFType::NONE: // We are not using an EKF so no data return false; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // EKF2 does not support source level variances return false; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // use EKF to get variance return EKF3.getVelInnovationsAndVariancesForSource((AP_NavEKF_Source::SourceXY)source, innovations, variances); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: // SITL does not support source level variances return false; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: return false; #endif } return false; } //get the index of the active airspeed sensor, wrt the primary core uint8_t AP_AHRS::get_active_airspeed_index() const { #if AP_AIRSPEED_ENABLED const auto *airspeed = AP::airspeed(); if (airspeed == nullptr) { return 0; } // we only have affinity for EKF3 as of now #if HAL_NAVEKF3_AVAILABLE if (active_EKF_type() == EKFType::THREE) { uint8_t ret = EKF3.getActiveAirspeed(); if (ret != 255 && airspeed->healthy(ret)) { return ret; } } #endif // for the rest, let the primary airspeed sensor be used return airspeed->get_primary(); #else return 0; #endif // AP_AIRSPEED_ENABLED } // get the index of the current primary IMU uint8_t AP_AHRS::get_primary_IMU_index() const { int8_t imu = -1; switch (active_EKF_type()) { case EKFType::NONE: imu = AP::ins().get_primary_gyro(); break; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: // let EKF2 choose primary IMU imu = EKF2.getPrimaryCoreIMUIndex(); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: // let EKF2 choose primary IMU imu = EKF3.getPrimaryCoreIMUIndex(); break; #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: break; #endif } if (imu == -1) { imu = AP::ins().get_primary_accel(); } return imu; } // return the index of the primary core or -1 if no primary core selected int8_t AP_AHRS::get_primary_core_index() const { switch (active_EKF_type()) { case EKFType::NONE: #if AP_AHRS_SIM_ENABLED case EKFType::SIM: #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: #endif // we have only one core return 0; #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.getPrimaryCoreIndex(); #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.getPrimaryCoreIndex(); #endif } // we should never get here INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); return -1; } // get the index of the current primary accelerometer sensor uint8_t AP_AHRS::get_primary_accel_index(void) const { if (ekf_type() != EKFType::NONE) { return get_primary_IMU_index(); } return AP::ins().get_primary_accel(); } // get the index of the current primary gyro sensor uint8_t AP_AHRS::get_primary_gyro_index(void) const { if (ekf_type() != EKFType::NONE) { return get_primary_IMU_index(); } return AP::ins().get_primary_gyro(); } // see if EKF lane switching is possible to avoid EKF failsafe void AP_AHRS::check_lane_switch(void) { switch (active_EKF_type()) { case EKFType::NONE: break; #if AP_AHRS_SIM_ENABLED case EKFType::SIM: break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: break; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.checkLaneSwitch(); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.checkLaneSwitch(); break; #endif } } // request EKF yaw reset to try and avoid the need for an EKF lane switch or failsafe void AP_AHRS::request_yaw_reset(void) { switch (active_EKF_type()) { case EKFType::NONE: break; #if AP_AHRS_SIM_ENABLED case EKFType::SIM: break; #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: break; #endif #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: EKF2.requestYawReset(); break; #endif #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: EKF3.requestYawReset(); break; #endif } } // set position, velocity and yaw sources to either 0=primary, 1=secondary, 2=tertiary void AP_AHRS::set_posvelyaw_source_set(uint8_t source_set_idx) { #if HAL_NAVEKF3_AVAILABLE EKF3.setPosVelYawSourceSet(source_set_idx); #endif } //returns active source set used, 0=primary, 1=secondary, 2=tertiary uint8_t AP_AHRS::get_posvelyaw_source_set() const { #if HAL_NAVEKF3_AVAILABLE return EKF3.get_active_source_set(); #else return 0; #endif } void AP_AHRS::Log_Write() { #if HAL_NAVEKF2_AVAILABLE EKF2.Log_Write(); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.Log_Write(); #endif Write_AHRS2(); Write_POS(); #if AP_AHRS_SIM_ENABLED AP::sitl()->Log_Write_SIMSTATE(); #endif } // check if non-compass sensor is providing yaw. Allows compass pre-arm checks to be bypassed bool AP_AHRS::using_noncompass_for_yaw(void) const { switch (active_EKF_type()) { #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.isExtNavUsedForYaw(); #endif case EKFType::NONE: #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.using_noncompass_for_yaw(); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: #endif return false; } // since there is no default case above, this is unreachable return false; } // check if external nav is providing yaw bool AP_AHRS::using_extnav_for_yaw(void) const { switch (active_EKF_type()) { #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.isExtNavUsedForYaw(); #endif case EKFType::NONE: #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.using_extnav_for_yaw(); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: #endif return false; } // since there is no default case above, this is unreachable return false; } // set and save the alt noise parameter value void AP_AHRS::set_alt_measurement_noise(float noise) { #if HAL_NAVEKF2_AVAILABLE EKF2.set_baro_alt_noise(noise); #endif #if HAL_NAVEKF3_AVAILABLE EKF3.set_baro_alt_noise(noise); #endif } // check if non-compass sensor is providing yaw. Allows compass pre-arm checks to be bypassed const EKFGSF_yaw *AP_AHRS::get_yaw_estimator(void) const { switch (active_EKF_type()) { #if HAL_NAVEKF2_AVAILABLE case EKFType::TWO: return EKF2.get_yawEstimator(); #endif case EKFType::NONE: #if HAL_NAVEKF3_AVAILABLE case EKFType::THREE: return EKF3.get_yawEstimator(); #endif #if AP_AHRS_SIM_ENABLED case EKFType::SIM: #endif #if HAL_EXTERNAL_AHRS_ENABLED case EKFType::EXTERNAL: #endif return nullptr; } // since there is no default case above, this is unreachable return nullptr; } // singleton instance AP_AHRS *AP_AHRS::_singleton; namespace AP { AP_AHRS &ahrs() { return *AP_AHRS::get_singleton(); } }