// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if CLI_ENABLED == ENABLED // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv); static int8_t test_radio(uint8_t argc, const Menu::arg *argv); //static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv); //static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv); static int8_t test_gps(uint8_t argc, const Menu::arg *argv); static int8_t test_tri(uint8_t argc, const Menu::arg *argv); static int8_t test_adc(uint8_t argc, const Menu::arg *argv); static int8_t test_imu(uint8_t argc, const Menu::arg *argv); //static int8_t test_dcm(uint8_t argc, const Menu::arg *argv); //static int8_t test_omega(uint8_t argc, const Menu::arg *argv); static int8_t test_battery(uint8_t argc, const Menu::arg *argv); //static int8_t test_nav(uint8_t argc, const Menu::arg *argv); //static int8_t test_wp_nav(uint8_t argc, const Menu::arg *argv); //static int8_t test_reverse(uint8_t argc, const Menu::arg *argv); static int8_t test_tuning(uint8_t argc, const Menu::arg *argv); static int8_t test_current(uint8_t argc, const Menu::arg *argv); static int8_t test_relay(uint8_t argc, const Menu::arg *argv); static int8_t test_wp(uint8_t argc, const Menu::arg *argv); static int8_t test_baro(uint8_t argc, const Menu::arg *argv); //static int8_t test_mag(uint8_t argc, const Menu::arg *argv); static int8_t test_sonar(uint8_t argc, const Menu::arg *argv); #ifdef OPTFLOW_ENABLED static int8_t test_optflow(uint8_t argc, const Menu::arg *argv); #endif //static int8_t test_xbee(uint8_t argc, const Menu::arg *argv); static int8_t test_eedump(uint8_t argc, const Menu::arg *argv); static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv); //static int8_t test_mission(uint8_t argc, const Menu::arg *argv); // This is the help function // PSTR is an AVR macro to read strings from flash memory // printf_P is a version of printf that reads from flash memory /*static int8_t help_test(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\n" "Commands:\n" " radio\n" " servos\n" " g_gps\n" " imu\n" " battery\n" "\n")); }*/ // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details const struct Menu::command test_menu_commands[] PROGMEM = { {"pwm", test_radio_pwm}, {"radio", test_radio}, // {"failsafe", test_failsafe}, // {"stabilize", test_stabilize}, {"gps", test_gps}, #if HIL_MODE != HIL_MODE_ATTITUDE {"adc", test_adc}, #endif {"imu", test_imu}, //{"dcm", test_dcm}, //{"omega", test_omega}, {"battery", test_battery}, {"tune", test_tuning}, {"tri", test_tri}, {"current", test_current}, {"relay", test_relay}, {"wp", test_wp}, //{"nav", test_nav}, #if HIL_MODE != HIL_MODE_ATTITUDE {"altitude", test_baro}, #endif {"sonar", test_sonar}, //{"compass", test_mag}, #ifdef OPTFLOW_ENABLED {"optflow", test_optflow}, #endif //{"xbee", test_xbee}, {"eedump", test_eedump}, {"rawgps", test_rawgps}, // {"mission", test_mission}, //{"reverse", test_reverse}, //{"wp", test_wp_nav}, }; // A Macro to create the Menu MENU(test_menu, "test", test_menu_commands); static int8_t test_mode(uint8_t argc, const Menu::arg *argv) { //Serial.printf_P(PSTR("Test Mode\n\n")); test_menu.run(); return 0; } static int8_t test_eedump(uint8_t argc, const Menu::arg *argv) { int i, j; // hexdump the EEPROM for (i = 0; i < EEPROM_MAX_ADDR; i += 16) { Serial.printf_P(PSTR("%04x:"), i); for (j = 0; j < 16; j++) Serial.printf_P(PSTR(" %02x"), eeprom_read_byte((const uint8_t *)(i + j))); Serial.println(); } return(0); } static int8_t test_radio_pwm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); // servo Yaw //APM_RC.OutputCh(CH_7, g.rc_4.radio_out); Serial.printf_P(PSTR("IN: 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\t8: %d\n"), g.rc_1.radio_in, g.rc_2.radio_in, g.rc_3.radio_in, g.rc_4.radio_in, g.rc_5.radio_in, g.rc_6.radio_in, g.rc_7.radio_in, g.rc_8.radio_in); if(Serial.available() > 0){ return (0); } } } static int8_t test_tri(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); g.rc_4.servo_out = g.rc_4.control_in; g.rc_4.calc_pwm(); Serial.printf_P(PSTR("input: %d\toutput%d\n"), g.rc_4.control_in, g.rc_4.radio_out); APM_RC.OutputCh(CH_7, g.rc_4.radio_out); if(Serial.available() > 0){ return (0); } } } /* static int8_t test_nav(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(1000); g_gps->ground_course = 19500; calc_nav_rate2(g.waypoint_speed_max); calc_nav_pitch_roll2(); g_gps->ground_course = 28500; calc_nav_rate2(g.waypoint_speed_max); calc_nav_pitch_roll2(); g_gps->ground_course = 1500; calc_nav_rate2(g.waypoint_speed_max); calc_nav_pitch_roll2(); g_gps->ground_course = 10500; calc_nav_rate2(g.waypoint_speed_max); calc_nav_pitch_roll2(); //if(Serial.available() > 0){ return (0); //} } } */ static int8_t test_radio(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); read_radio(); Serial.printf_P(PSTR("IN 1: %d\t2: %d\t3: %d\t4: %d\t5: %d\t6: %d\t7: %d\n"), g.rc_1.control_in, g.rc_2.control_in, g.rc_3.control_in, g.rc_4.control_in, g.rc_5.control_in, g.rc_6.control_in, g.rc_7.control_in); //Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d\n"), (g.rc_1.servo_out / 100), (g.rc_2.servo_out / 100), g.rc_3.servo_out, (g.rc_4.servo_out / 100)); /*Serial.printf_P(PSTR( "min: %d" "\t in: %d" "\t pwm_in: %d" "\t sout: %d" "\t pwm_out %d\n"), g.rc_3.radio_min, g.rc_3.control_in, g.rc_3.radio_in, g.rc_3.servo_out, g.rc_3.pwm_out ); */ if(Serial.available() > 0){ return (0); } } } /* static int8_t test_failsafe(uint8_t argc, const Menu::arg *argv) { #if THROTTLE_FAILSAFE byte fail_test; print_hit_enter(); for(int i = 0; i < 50; i++){ delay(20); read_radio(); } oldSwitchPosition = readSwitch(); Serial.printf_P(PSTR("Unplug battery, throttle in neutral, turn off radio.\n")); while(g.rc_3.control_in > 0){ delay(20); read_radio(); } while(1){ delay(20); read_radio(); if(g.rc_3.control_in > 0){ Serial.printf_P(PSTR("THROTTLE CHANGED %d \n"), g.rc_3.control_in); fail_test++; } if(oldSwitchPosition != readSwitch()){ Serial.printf_P(PSTR("CONTROL MODE CHANGED: ")); Serial.println(flight_mode_strings[readSwitch()]); fail_test++; } if(g.throttle_fs_enabled && g.rc_3.get_failsafe()){ Serial.printf_P(PSTR("THROTTLE FAILSAFE ACTIVATED: %d, "), g.rc_3.radio_in); Serial.println(flight_mode_strings[readSwitch()]); fail_test++; } if(fail_test > 0){ return (0); } if(Serial.available() > 0){ Serial.printf_P(PSTR("LOS caused no change in ACM.\n")); return (0); } } #else return (0); #endif } */ /*static int8_t test_stabilize(uint8_t argc, const Menu::arg *argv) { static byte ts_num; print_hit_enter(); delay(1000); // setup the radio // --------------- init_rc_in(); control_mode = STABILIZE; Serial.printf_P(PSTR("g.pi_stabilize_roll.kP: %4.4f\n"), g.pi_stabilize_roll.kP()); Serial.printf_P(PSTR("max_stabilize_dampener:%d\n\n "), max_stabilize_dampener); motor_auto_armed = false; motor_armed = true; while(1){ // 50 hz if (millis() - fast_loopTimer > 19) { delta_ms_fast_loop = millis() - fast_loopTimer; fast_loopTimer = millis(); G_Dt = (float)delta_ms_fast_loop / 1000.f; if(g.compass_enabled){ medium_loopCounter++; if(medium_loopCounter == 5){ compass.read(); // Read magnetometer compass.calculate(dcm.roll, dcm.pitch); // Calculate heading compass.null_offsets(dcm.get_dcm_matrix()); medium_loopCounter = 0; } } // for trim features read_trim_switch(); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); // IMU // --- read_AHRS(); // allow us to zero out sensors with control switches if(g.rc_5.control_in < 600){ dcm.roll_sensor = dcm.pitch_sensor = 0; } // custom code/exceptions for flight modes // --------------------------------------- update_current_flight_mode(); // write out the servo PWM values // ------------------------------ set_servos_4(); ts_num++; if (ts_num > 10){ ts_num = 0; Serial.printf_P(PSTR("r: %d, p:%d, rc1:%d, "), (int)(dcm.roll_sensor/100), (int)(dcm.pitch_sensor/100), g.rc_1.pwm_out); print_motor_out(); } // R: 1417, L: 1453 F: 1453 B: 1417 //Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); //Serial.printf_P(PSTR("timer: %d, r: %d\tp: %d\t y: %d\n"), (int)delta_ms_fast_loop, ((int)dcm.roll_sensor/100), ((int)dcm.pitch_sensor/100), ((uint16_t)dcm.yaw_sensor/100)); if(Serial.available() > 0){ if(g.compass_enabled){ compass.save_offsets(); report_compass(); } return (0); } } } } */ #if HIL_MODE != HIL_MODE_ATTITUDE static int8_t test_adc(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); Serial.printf_P(PSTR("ADC\n")); delay(1000); while(1){ for(int i = 0; i < 9; i++){ Serial.printf_P(PSTR("%u,"),adc.Ch(i)); } Serial.println(); delay(20); if(Serial.available() > 0){ return (0); } } } #endif static int8_t test_imu(uint8_t argc, const Menu::arg *argv) { //Serial.printf_P(PSTR("Calibrating.")); //dcm.kp_yaw(0.02); //dcm.ki_yaw(0); report_imu(); imu.init_gyro(); report_imu(); print_hit_enter(); delay(1000); //float cos_roll, sin_roll, cos_pitch, sin_pitch, cos_yaw, sin_yaw; fast_loopTimer = millis(); while(1){ //delay(20); if (millis() - fast_loopTimer >=20) { // IMU // --- read_AHRS(); //Vector3f accels = imu.get_accel(); //Vector3f gyros = imu.get_gyro(); //Vector3f accel_filt = imu.get_accel_filtered(); //accels_rot = dcm.get_dcm_matrix() * accel_filt; medium_loopCounter++; if(medium_loopCounter == 4){ update_trig(); } if(medium_loopCounter == 1){ //read_radio(); medium_loopCounter = 0; //tuning(); //dcm.kp_roll_pitch((float)g.rc_6.control_in / 2000.0); /* Serial.printf_P(PSTR("r: %ld\tp: %ld\t y: %ld, kp:%1.4f, kp:%1.4f \n"), dcm.roll_sensor, dcm.pitch_sensor, dcm.yaw_sensor, dcm.kp_roll_pitch(), (float)g.rc_6.control_in / 2000.0); */ Serial.printf_P(PSTR("%ld, %ld, %ld, | %ld, %ld, %ld\n"), dcm.roll_sensor, dcm.pitch_sensor, dcm.yaw_sensor, (long)(degrees(omega.x) * 100.0), (long)(degrees(omega.y) * 100.0), (long)(degrees(omega.z) * 100.0)); if(g.compass_enabled){ compass.read(); // Read magnetometer compass.calculate(dcm.get_dcm_matrix()); } } // We are using the IMU // --------------------- /* Serial.printf_P(PSTR("A: %4.4f, %4.4f, %4.4f\t" "G: %4.4f, %4.4f, %4.4f\t"), accels.x, accels.y, accels.z, gyros.x, gyros.y, gyros.z); */ /* Serial.printf_P(PSTR("cp: %1.2f, sp: %1.2f, cr: %1.2f, sr: %1.2f, cy: %1.2f, sy: %1.2f,\n"), cos_pitch_x, sin_pitch_y, cos_roll_x, sin_roll_y, cos_yaw_x, // x sin_yaw_y); // y //*/ //Log_Write_Raw(); } if(Serial.available() > 0){ return (0); } } } static int8_t test_gps(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(333); // Blink GPS LED if we don't have a fix // ------------------------------------ update_GPS_light(); g_gps->update(); if (g_gps->new_data){ Serial.printf_P(PSTR("Lat: %ld, Lon %ld, Alt: %ldm, #sats: %d\n"), g_gps->latitude, g_gps->longitude, g_gps->altitude/100, g_gps->num_sats); g_gps->new_data = false; }else{ Serial.print("."); } if(Serial.available() > 0){ return (0); } } } /* static int8_t test_dcm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Gyro | Accel\n")); Vector3f _cam_vector; Vector3f _out_vector; G_Dt = .02; while(1){ for(byte i = 0; i <= 50; i++){ delay(20); // IMU // --- read_AHRS(); } Matrix3f temp = dcm.get_dcm_matrix(); Matrix3f temp_t = dcm.get_dcm_transposed(); Serial.printf_P(PSTR("dcm\n" "%4.4f \t %4.4f \t %4.4f \n" "%4.4f \t %4.4f \t %4.4f \n" "%4.4f \t %4.4f \t %4.4f \n\n"), temp.a.x, temp.a.y, temp.a.z, temp.b.x, temp.b.y, temp.b.z, temp.c.x, temp.c.y, temp.c.z); int _pitch = degrees(-asin(temp.c.x)); int _roll = degrees(atan2(temp.c.y, temp.c.z)); int _yaw = degrees(atan2(temp.b.x, temp.a.x)); Serial.printf_P(PSTR( "angles\n" "%d \t %d \t %d\n\n"), _pitch, _roll, _yaw); //_out_vector = _cam_vector * temp; //Serial.printf_P(PSTR( "cam\n" // "%d \t %d \t %d\n\n"), // (int)temp.a.x * 100, (int)temp.a.y * 100, (int)temp.a.x * 100); if(Serial.available() > 0){ return (0); } } } */ /* static int8_t test_dcm(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Gyro | Accel\n")); delay(1000); while(1){ Vector3f accels = dcm.get_accel(); Serial.print("accels.z:"); Serial.print(accels.z); Serial.print("omega.z:"); Serial.print(omega.z); delay(100); if(Serial.available() > 0){ return (0); } } } */ /*static int8_t test_omega(uint8_t argc, const Menu::arg *argv) { static byte ts_num; float old_yaw; print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Omega")); delay(1000); G_Dt = .02; while(1){ delay(20); // IMU // --- read_AHRS(); float my_oz = (dcm.yaw - old_yaw) * 50; old_yaw = dcm.yaw; ts_num++; if (ts_num > 2){ ts_num = 0; //Serial.printf_P(PSTR("R: %4.4f\tP: %4.4f\tY: %4.4f\tY: %4.4f\n"), omega.x, omega.y, omega.z, my_oz); Serial.printf_P(PSTR(" Yaw: %ld\tY: %4.4f\tY: %4.4f\n"), dcm.yaw_sensor, omega.z, my_oz); } if(Serial.available() > 0){ return (0); } } return (0); } //*/ static int8_t test_battery(uint8_t argc, const Menu::arg *argv) { #if BATTERY_EVENT == 1 for (int i = 0; i < 20; i++){ delay(20); read_battery(); } Serial.printf_P(PSTR("Volts: 1:%2.2f, 2:%2.2f, 3:%2.2f, 4:%2.2f\n"), battery_voltage1, battery_voltage2, battery_voltage3, battery_voltage4); #else Serial.printf_P(PSTR("Not enabled\n")); #endif return (0); } static int8_t test_tuning(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); while(1){ delay(200); read_radio(); tuning(); Serial.printf_P(PSTR("tune: %1.3f\n"), tuning_value); if(Serial.available() > 0){ return (0); } } } static int8_t test_current(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); //delta_ms_medium_loop = 100; while(1){ delay(100); read_radio(); read_battery(); Serial.printf_P(PSTR("V: %4.4f, A: %4.4f, mAh: %4.4f\n"), battery_voltage, current_amps, current_total); APM_RC.OutputCh(CH_1, g.rc_3.radio_in); APM_RC.OutputCh(CH_2, g.rc_3.radio_in); APM_RC.OutputCh(CH_3, g.rc_3.radio_in); APM_RC.OutputCh(CH_4, g.rc_3.radio_in); if(Serial.available() > 0){ return (0); } } } static int8_t test_relay(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ Serial.printf_P(PSTR("Relay on\n")); relay.on(); delay(3000); if(Serial.available() > 0){ return (0); } Serial.printf_P(PSTR("Relay off\n")); relay.off(); delay(3000); if(Serial.available() > 0){ return (0); } } } static int8_t test_wp(uint8_t argc, const Menu::arg *argv) { delay(1000); // save the alitude above home option Serial.printf_P(PSTR("Hold alt ")); if(g.RTL_altitude < 0){ Serial.printf_P(PSTR("\n")); }else{ Serial.printf_P(PSTR("of %dm\n"), (int)g.RTL_altitude / 100); } Serial.printf_P(PSTR("%d wp\n"), (int)g.command_total); Serial.printf_P(PSTR("Hit rad: %d\n"), (int)g.waypoint_radius); //Serial.printf_P(PSTR("Loiter radius: %d\n\n"), (int)g.loiter_radius); report_wp(); return (0); } static int8_t test_rawgps(uint8_t argc, const Menu::arg *argv) { /* print_hit_enter(); delay(1000); while(1){ if (Serial3.available()){ digitalWrite(B_LED_PIN, HIGH); // Blink Yellow LED if we are sending data to GPS Serial1.write(Serial3.read()); digitalWrite(B_LED_PIN, LOW); } if (Serial1.available()){ digitalWrite(C_LED_PIN, HIGH); // Blink Red LED if we are receiving data from GPS Serial3.write(Serial1.read()); digitalWrite(C_LED_PIN, LOW); } if(Serial.available() > 0){ return (0); } } */ } /*static int8_t test_xbee(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); Serial.printf_P(PSTR("Begin XBee X-CTU Range and RSSI Test:\n")); while(1){ if (Serial3.available()) Serial3.write(Serial3.read()); if(Serial.available() > 0){ return (0); } } } */ #if HIL_MODE != HIL_MODE_ATTITUDE static int8_t test_baro(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); init_barometer(); while(1){ delay(100); barometer.Read(); delay(100); baro_alt = read_barometer(); int temp_alt = (barometer._offset_press - barometer.RawPress) << 1; // invert and scale baro_rate = (temp_alt - old_baro_alt) * 10; old_baro_alt = temp_alt; // 1 2 3 4 5 1 2 3 4 5 Serial.printf_P(PSTR("Baro: %dcm, rate:%d, %ld, %ld, %d\n"), baro_alt, climb_rate, barometer.RawTemp, barometer.RawPress, temp_alt); //Serial.printf_P(PSTR("Baro, %d, %ld, %ld, %ld, %ld\n"), baro_alt, barometer.RawTemp, barometer.RawTemp2, barometer.RawPress, barometer.RawPress2); if(Serial.available() > 0){ return (0); } } } #endif /* static int8_t test_mag(uint8_t argc, const Menu::arg *argv) { if(g.compass_enabled) { //Serial.printf_P(PSTR("MAG_ORIENTATION: %d\n"), MAG_ORIENTATION); print_hit_enter(); while(1){ delay(100); compass.read(); compass.calculate(dcm.get_dcm_matrix()); Vector3f maggy = compass.get_offsets(); Serial.printf_P(PSTR("Heading: %ld, XYZ: %d, %d, %d\n"), (wrap_360(ToDeg(compass.heading) * 100)) /100, compass.mag_x, compass.mag_y, compass.mag_z); if(Serial.available() > 0){ return (0); } } } else { Serial.printf_P(PSTR("Compass: ")); print_enabled(false); return (0); } } */ /* static int8_t test_reverse(uint8_t argc, const Menu::arg *argv) { print_hit_enter(); delay(1000); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- g.rc_4.set_reverse(0); g.rc_4.set_pwm(APM_RC.InputCh(CH_4)); g.rc_4.servo_out = g.rc_4.control_in; g.rc_4.calc_pwm(); Serial.printf_P(PSTR("PWM:%d input: %d\toutput%d "), APM_RC.InputCh(CH_4), g.rc_4.control_in, g.rc_4.radio_out); APM_RC.OutputCh(CH_6, g.rc_4.radio_out); g.rc_4.set_reverse(1); g.rc_4.set_pwm(APM_RC.InputCh(CH_4)); g.rc_4.servo_out = g.rc_4.control_in; g.rc_4.calc_pwm(); Serial.printf_P(PSTR("\trev input: %d\toutput%d\n"), g.rc_4.control_in, g.rc_4.radio_out); APM_RC.OutputCh(CH_7, g.rc_4.radio_out); if(Serial.available() > 0){ g.rc_4.set_reverse(0); return (0); } } }*/ /* test the sonar */ static int8_t test_sonar(uint8_t argc, const Menu::arg *argv) { if(g.sonar_enabled == false){ Serial.printf_P(PSTR("Sonar disabled\n")); return (0); } print_hit_enter(); while(1) { delay(100); Serial.printf_P(PSTR("Sonar: %d cm\n"), sonar.read()); //Serial.printf_P(PSTR("Sonar, %d, %d\n"), sonar.read(), sonar.raw_value); if(Serial.available() > 0){ return (0); } } return (0); } #ifdef OPTFLOW_ENABLED static int8_t test_optflow(uint8_t argc, const Menu::arg *argv) { ///* if(g.optflow_enabled) { Serial.printf_P(PSTR("man id: %d\t"),optflow.read_register(ADNS3080_PRODUCT_ID)); print_hit_enter(); while(1){ delay(200); optflow.read(); Log_Write_Optflow(); Serial.printf_P(PSTR("x/dx: %d/%d\t y/dy %d/%d\t squal:%d\n"), optflow.x, optflow.dx, optflow.y, optflow.dy, optflow.surface_quality); if(Serial.available() > 0){ return (0); } } } else { Serial.printf_P(PSTR("OptFlow: ")); print_enabled(false); return (0); } } #endif /* static int8_t test_mission(uint8_t argc, const Menu::arg *argv) { //write out a basic mission to the EEPROM //{ // uint8_t id; ///< command id // uint8_t options; ///< options bitmask (1<<0 = relative altitude) // uint8_t p1; ///< param 1 // int32_t alt; ///< param 2 - Altitude in centimeters (meters * 100) // int32_t lat; ///< param 3 - Lattitude * 10**7 // int32_t lng; ///< param 4 - Longitude * 10**7 //} // clear home {Location t = {0, 0, 0, 0, 0, 0}; set_command_with_index(t,0);} // CMD opt pitch alt/cm {Location t = {MAV_CMD_NAV_TAKEOFF, WP_OPTION_RELATIVE, 0, 100, 0, 0}; set_command_with_index(t,1);} if (!strcmp_P(argv[1].str, PSTR("wp"))) { // CMD opt {Location t = {MAV_CMD_NAV_WAYPOINT, WP_OPTION_RELATIVE, 15, 0, 0, 0}; set_command_with_index(t,2);} // CMD opt {Location t = {MAV_CMD_NAV_RETURN_TO_LAUNCH, WP_OPTION_YAW, 0, 0, 0, 0}; set_command_with_index(t,3);} // CMD opt {Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0}; set_command_with_index(t,4);} } else { //2250 = 25 meteres // CMD opt p1 //alt //NS //WE {Location t = {MAV_CMD_NAV_LOITER_TIME, 0, 10, 0, 0, 0}; // 19 set_command_with_index(t,2);} // CMD opt dir angle/deg deg/s relative {Location t = {MAV_CMD_CONDITION_YAW, 0, 1, 360, 60, 1}; set_command_with_index(t,3);} // CMD opt {Location t = {MAV_CMD_NAV_LAND, 0, 0, 0, 0, 0}; set_command_with_index(t,4);} } g.RTL_altitude.set_and_save(300); g.command_total.set_and_save(4); g.waypoint_radius.set_and_save(3); test_wp(NULL, NULL); return (0); } */ static void print_hit_enter() { Serial.printf_P(PSTR("Hit Enter to exit.\n\n")); } /* static void fake_out_gps() { static float rads; g_gps->new_data = true; g_gps->fix = true; //int length = g.rc_6.control_in; rads += .05; if (rads > 6.28){ rads = 0; } g_gps->latitude = 377696000; // Y g_gps->longitude = -1224319000; // X g_gps->altitude = 9000; // meters * 100 //next_WP.lng = home.lng - length * sin(rads); // X //next_WP.lat = home.lat + length * cos(rads); // Y } */ /* static void print_motor_out(){ Serial.printf("out: R: %d, L: %d F: %d B: %d\n", (motor_out[CH_1] - g.rc_3.radio_min), (motor_out[CH_2] - g.rc_3.radio_min), (motor_out[CH_3] - g.rc_3.radio_min), (motor_out[CH_4] - g.rc_3.radio_min)); } */ #endif // CLI_ENABLED