/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_Proximity_LightWareSF40C.h" #include #include #include extern const AP_HAL::HAL& hal; /* The constructor also initialises the proximity sensor. Note that this constructor is not called until detect() returns true, so we already know that we should setup the proximity sensor */ AP_Proximity_LightWareSF40C::AP_Proximity_LightWareSF40C(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) : AP_Proximity_Backend(_frontend, _state) { const AP_SerialManager &serial_manager = AP::serialmanager(); uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0); if (uart != nullptr) { uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar360, 0)); } } // detect if a Lightware proximity sensor is connected by looking for a configured serial port bool AP_Proximity_LightWareSF40C::detect() { return AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Lidar360, 0) != nullptr; } // update the state of the sensor void AP_Proximity_LightWareSF40C::update(void) { if (uart == nullptr) { return; } // initialise sensor if necessary bool initialised = initialise(); // process incoming messages check_for_reply(); // request new data from sensor if (initialised) { request_new_data(); } // check for timeout and set health status if ((_last_distance_received_ms == 0) || (AP_HAL::millis() - _last_distance_received_ms > PROXIMITY_SF40C_TIMEOUT_MS)) { set_status(AP_Proximity::Status::NoData); } else { set_status(AP_Proximity::Status::Good); } } // get maximum and minimum distances (in meters) of primary sensor float AP_Proximity_LightWareSF40C::distance_max() const { return 100.0f; } float AP_Proximity_LightWareSF40C::distance_min() const { return 0.20f; } // initialise sensor (returns true if sensor is succesfully initialised) bool AP_Proximity_LightWareSF40C::initialise() { // set motor direction once per second if (_motor_direction > 1) { if ((_last_request_ms == 0) || AP_HAL::millis() - _last_request_ms > 1000) { set_motor_direction(); } } // set forward direction once per second if (_forward_direction != frontend.get_yaw_correction(state.instance)) { if ((_last_request_ms == 0) || AP_HAL::millis() - _last_request_ms > 1000) { set_forward_direction(); } } // request motors turn on once per second if (_motor_speed == 0) { if ((_last_request_ms == 0) || AP_HAL::millis() - _last_request_ms > 1000) { set_motor_speed(true); } return false; } // initialise sectors if (!_sector_initialised) { init_sectors(); return false; } return true; } // initialise sector angles using user defined ignore areas void AP_Proximity_LightWareSF40C::init_sectors() { // use defaults if no ignore areas defined uint8_t ignore_area_count = get_ignore_area_count(); if (ignore_area_count == 0) { _sector_initialised = true; return; } uint8_t sector = 0; for (uint8_t i=0; i 0) && (sector < PROXIMITY_SECTORS_MAX)) { uint16_t sector_size; if (degrees_to_fill >= 90) { // set sector to maximum of 45 degrees sector_size = 45; } else if (degrees_to_fill > 45) { // use half the remaining area to optimise size of this sector and the next sector_size = degrees_to_fill / 2.0f; } else { // 45 degrees or less are left so put it all into the next sector sector_size = degrees_to_fill; } // record the sector middle and width _sector_middle_deg[sector] = wrap_360(start_angle + sector_size / 2.0f); _sector_width_deg[sector] = sector_size; // move onto next sector start_angle += sector_size; sector++; degrees_to_fill -= sector_size; } } } // set num sectors _num_sectors = sector; // re-initialise boundary because sector locations have changed init_boundary(); // record success _sector_initialised = true; } // set speed of rotating motor void AP_Proximity_LightWareSF40C::set_motor_speed(bool on_off) { // exit immediately if no uart if (uart == nullptr) { return; } // set motor update speed if (on_off) { uart->write("#MBS,3\r\n"); // send request to spin motor at 4.5hz } else { uart->write("#MBS,0\r\n"); // send request to stop motor } // request update motor speed uart->write("?MBS\r\n"); _last_request_type = RequestType_MotorSpeed; _last_request_ms = AP_HAL::millis(); } // set spin direction of motor void AP_Proximity_LightWareSF40C::set_motor_direction() { // exit immediately if no uart if (uart == nullptr) { return; } // set motor update speed if (frontend.get_orientation(state.instance) == 0) { uart->write("#MBD,0\r\n"); // spin clockwise } else { uart->write("#MBD,1\r\n"); // spin counter clockwise } // request update on motor direction uart->write("?MBD\r\n"); _last_request_type = RequestType_MotorDirection; _last_request_ms = AP_HAL::millis(); } // set forward direction (to allow rotating lidar) void AP_Proximity_LightWareSF40C::set_forward_direction() { // exit immediately if no uart if (uart == nullptr) { return; } // set forward direction char request_str[15]; int16_t yaw_corr = frontend.get_yaw_correction(state.instance); yaw_corr = constrain_int16(yaw_corr, -999, 999); snprintf(request_str, sizeof(request_str), "#MBF,%d\r\n", yaw_corr); uart->write(request_str); // request update on motor direction uart->write("?MBF\r\n"); _last_request_type = RequestType_ForwardDirection; _last_request_ms = AP_HAL::millis(); } // request new data if required void AP_Proximity_LightWareSF40C::request_new_data() { if (uart == nullptr) { return; } // after timeout assume no reply will ever come uint32_t now = AP_HAL::millis(); if ((_last_request_type != RequestType_None) && ((now - _last_request_ms) > PROXIMITY_SF40C_TIMEOUT_MS)) { _last_request_type = RequestType_None; _last_request_ms = 0; } // if we are not waiting for a reply, ask for something if (_last_request_type == RequestType_None) { _request_count++; if (_request_count >= 5) { send_request_for_health(); _request_count = 0; } else { // request new distance measurement send_request_for_distance(); } _last_request_ms = now; } } // send request for sensor health void AP_Proximity_LightWareSF40C::send_request_for_health() { if (uart == nullptr) { return; } uart->write("?GS\r\n"); _last_request_type = RequestType_Health; _last_request_ms = AP_HAL::millis(); } // send request for distance from the next sector bool AP_Proximity_LightWareSF40C::send_request_for_distance() { if (uart == nullptr) { return false; } // increment sector _last_sector++; if (_last_sector >= _num_sectors) { _last_sector = 0; } // prepare request char request_str[16]; snprintf(request_str, sizeof(request_str), "?TS,%u,%u\r\n", MIN(_sector_width_deg[_last_sector], 999), MIN(_sector_middle_deg[_last_sector], 999)); uart->write(request_str); // record request for distance _last_request_type = RequestType_DistanceMeasurement; _last_request_ms = AP_HAL::millis(); return true; } // check for replies from sensor, returns true if at least one message was processed bool AP_Proximity_LightWareSF40C::check_for_reply() { if (uart == nullptr) { return false; } // read any available lines from the lidar // if CR (i.e. \r), LF (\n) it means we have received a full packet so send for processing // lines starting with # are ignored because this is the echo of a set-motor request which has no reply // lines starting with ? are the echo back of our distance request followed by the sensed distance // distance data appears after a // distance data is comma separated so we put into separate elements (i.e. angle,distance) uint16_t count = 0; int16_t nbytes = uart->available(); while (nbytes-- > 0) { char c = uart->read(); // check for end of packet if (c == '\r' || c == '\n') { if ((element_len[0] > 0)) { if (process_reply()) { count++; } } // clear buffers after processing clear_buffers(); ignore_reply = false; wait_for_space = false; // if message starts with # ignore it } else if (c == '#' || ignore_reply) { ignore_reply = true; // if waiting for } else if (c == '?') { wait_for_space = true; } else if (wait_for_space) { if (c == ' ') { wait_for_space = false; } // if comma, move onto filling in 2nd element } else if (c == ',') { if ((element_num == 0) && (element_len[0] > 0)) { element_num++; } else { // don't support 3rd element so clear buffers clear_buffers(); ignore_reply = true; } // if part of a number, add to element buffer } else if (isdigit(c) || c == '.' || c == '-') { element_buf[element_num][element_len[element_num]] = c; element_len[element_num]++; if (element_len[element_num] >= sizeof(element_buf[element_num])-1) { // too long, discard the line clear_buffers(); ignore_reply = true; } } } return (count > 0); } // process reply bool AP_Proximity_LightWareSF40C::process_reply() { if (uart == nullptr) { return false; } bool success = false; switch (_last_request_type) { case RequestType_None: break; case RequestType_Health: // expect result in the form "0xhhhh" if (element_len[0] > 0) { long int result = strtol(element_buf[0], nullptr, 16); if (result > 0) { _sensor_status.value = result; success = true; } } break; case RequestType_MotorSpeed: _motor_speed = atoi(element_buf[0]); success = true; break; case RequestType_MotorDirection: _motor_direction = atoi(element_buf[0]); success = true; break; case RequestType_ForwardDirection: _forward_direction = atoi(element_buf[0]); success = true; break; case RequestType_DistanceMeasurement: { float angle_deg = (float)atof(element_buf[0]); float distance_m = (float)atof(element_buf[1]); uint8_t sector; if (convert_angle_to_sector(angle_deg, sector)) { _angle[sector] = angle_deg; _distance[sector] = distance_m; _distance_valid[sector] = is_positive(distance_m); _last_distance_received_ms = AP_HAL::millis(); success = true; // update boundary used for avoidance update_boundary_for_sector(sector, true); } break; } default: break; } // mark request as cleared if (success) { _last_request_type = RequestType_None; } return success; } // clear buffers ahead of processing next message void AP_Proximity_LightWareSF40C::clear_buffers() { element_len[0] = 0; element_len[1] = 0; element_num = 0; memset(element_buf, 0, sizeof(element_buf)); }