#include #include "AP_HAL_SITL.h" #include "Scheduler.h" #include "UARTDriver.h" #include #include #include #if defined (__clang__) #include #else #include #endif using namespace HALSITL; extern const AP_HAL::HAL& hal; AP_HAL::Proc Scheduler::_failsafe = nullptr; AP_HAL::MemberProc Scheduler::_timer_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr}; uint8_t Scheduler::_num_timer_procs = 0; bool Scheduler::_in_timer_proc = false; AP_HAL::MemberProc Scheduler::_io_proc[SITL_SCHEDULER_MAX_TIMER_PROCS] = {nullptr}; uint8_t Scheduler::_num_io_procs = 0; bool Scheduler::_in_io_proc = false; bool Scheduler::_should_reboot = false; Scheduler::thread_attr *Scheduler::threads; HAL_Semaphore Scheduler::_thread_sem; Scheduler::Scheduler(SITL_State *sitlState) : _sitlState(sitlState), _stopped_clock_usec(0) { } void Scheduler::init() { _main_ctx = pthread_self(); } bool Scheduler::in_main_thread() const { if (!_in_timer_proc && !_in_io_proc && pthread_self() == _main_ctx) { return true; } return false; } void Scheduler::delay_microseconds(uint16_t usec) { uint64_t start = AP_HAL::micros64(); do { uint64_t dtime = AP_HAL::micros64() - start; if (dtime >= usec) { break; } _sitlState->wait_clock(start + usec); } while (true); } void Scheduler::delay(uint16_t ms) { uint32_t start = AP_HAL::millis(); uint32_t now = start; do { delay_microseconds(1000); if (_min_delay_cb_ms <= (ms - (now - start))) { if (in_main_thread()) { call_delay_cb(); } } now = AP_HAL::millis(); } while (now - start < ms); } void Scheduler::register_timer_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i] == proc) { return; } } if (_num_timer_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { _timer_proc[_num_timer_procs] = proc; _num_timer_procs++; } } void Scheduler::register_io_process(AP_HAL::MemberProc proc) { for (uint8_t i = 0; i < _num_io_procs; i++) { if (_io_proc[i] == proc) { return; } } if (_num_io_procs < SITL_SCHEDULER_MAX_TIMER_PROCS) { _io_proc[_num_io_procs] = proc; _num_io_procs++; } } void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us) { _failsafe = failsafe; } void Scheduler::system_initialized() { if (_initialized) { AP_HAL::panic( "PANIC: scheduler system initialized called more than once"); } int exceptions = FE_OVERFLOW | FE_DIVBYZERO; #ifndef __i386__ // i386 with gcc doesn't work with FE_INVALID exceptions |= FE_INVALID; #endif if (_sitlState->_sitl == nullptr || _sitlState->_sitl->float_exception) { feenableexcept(exceptions); } else { feclearexcept(exceptions); } _initialized = true; } void Scheduler::sitl_end_atomic() { if (_nested_atomic_ctr == 0) { hal.uartA->printf("NESTED ATOMIC ERROR\n"); } else { _nested_atomic_ctr--; } } void Scheduler::reboot(bool hold_in_bootloader) { if (AP_BoardConfig::in_sensor_config_error()) { // the _should_reboot flag set below is not checked by the // sensor-config-error loop, so force the reboot here: HAL_SITL::actually_reboot(); abort(); } _should_reboot = true; } void Scheduler::_run_timer_procs() { if (_in_timer_proc) { // the timer calls took longer than the period of the // timer. This is bad, and may indicate a serious // driver failure. We can't just call the drivers // again, as we could run out of stack. So we only // call the _failsafe call. It's job is to detect if // the drivers or the main loop are indeed dead and to // activate whatever failsafe it thinks may help if // need be. We assume the failsafe code can't // block. If it does then we will recurse and die when // we run out of stack if (_failsafe != nullptr) { _failsafe(); } return; } _in_timer_proc = true; // now call the timer based drivers for (int i = 0; i < _num_timer_procs; i++) { if (_timer_proc[i]) { _timer_proc[i](); } } // and the failsafe, if one is setup if (_failsafe != nullptr) { _failsafe(); } _in_timer_proc = false; } void Scheduler::_run_io_procs() { if (_in_io_proc) { return; } _in_io_proc = true; // now call the IO based drivers for (int i = 0; i < _num_io_procs; i++) { if (_io_proc[i]) { _io_proc[i](); } } _in_io_proc = false; hal.uartA->_timer_tick(); hal.uartB->_timer_tick(); hal.uartC->_timer_tick(); hal.uartD->_timer_tick(); hal.uartE->_timer_tick(); hal.uartF->_timer_tick(); hal.uartG->_timer_tick(); hal.uartH->_timer_tick(); hal.storage->_timer_tick(); check_thread_stacks(); } /* set simulation timestamp */ void Scheduler::stop_clock(uint64_t time_usec) { _stopped_clock_usec = time_usec; if (time_usec - _last_io_run > 10000) { _last_io_run = time_usec; _run_io_procs(); } } /* trampoline for thread create */ void *Scheduler::thread_create_trampoline(void *ctx) { struct thread_attr *a = (struct thread_attr *)ctx; a->f[0](); WITH_SEMAPHORE(_thread_sem); if (threads == a) { threads = a->next; } else { for (struct thread_attr *p=threads; p->next; p=p->next) { if (p->next == a) { p->next = p->next->next; break; } } } free(a->stack); free(a->f); delete a; return nullptr; } #ifndef PTHREAD_STACK_MIN #define PTHREAD_STACK_MIN 16384U #endif /* create a new thread */ bool Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority) { WITH_SEMAPHORE(_thread_sem); // even an empty thread takes 2500 bytes on Linux, so always add 2300, giving us 200 bytes // safety margin stack_size += 2300; pthread_t thread {}; const uint32_t alloc_stack = MAX(size_t(PTHREAD_STACK_MIN),stack_size); struct thread_attr *a = new struct thread_attr; if (!a) { return false; } // take a copy of the MemberProc, it is freed after thread exits a->f = (AP_HAL::MemberProc *)malloc(sizeof(proc)); if (!a->f) { goto failed; } if (posix_memalign(&a->stack, 4096, alloc_stack) != 0) { goto failed; } if (!a->stack) { goto failed; } memset(a->stack, stackfill, alloc_stack); a->stack_min = (const uint8_t *)((((uint8_t *)a->stack) + alloc_stack) - stack_size); a->stack_size = stack_size; a->f[0] = proc; a->name = name; pthread_attr_init(&a->attr); if (pthread_attr_setstack(&a->attr, a->stack, alloc_stack) != 0) { AP_HAL::panic("Failed to set stack of size %u for thread %s", alloc_stack, name); } if (pthread_create(&thread, &a->attr, thread_create_trampoline, a) != 0) { goto failed; } a->next = threads; threads = a; return true; failed: if (a->stack) { free(a->stack); } if (a->f) { free(a->f); } delete a; return false; } /* check for stack overflow */ void Scheduler::check_thread_stacks(void) { WITH_SEMAPHORE(_thread_sem); for (struct thread_attr *p=threads; p; p=p->next) { const uint8_t ncheck = 8; for (uint8_t i=0; istack_min[i] != stackfill) { AP_HAL::panic("stack overflow in thread %s\n", p->name); } } } }