/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
main Rover class, containing all vehicle specific state
*/
#pragma once
#include
#include
// Libraries
#include
#include
#include
#include
#include // interface and maths for accelerometer calibration
#include // ArduPilot Mega DCM Library
#include // needed for AHRS build
#include
#include // Battery monitor library
#include
#include
#include
#include
#include // Camera triggering
#include // ArduPilot Mega Magnetometer Library
#include // Compass declination library
#include // ArduPilot GPS library
#include // Inertial Sensor (uncalibated IMU) Library
#include
#include // ArduPilot Mega Vector/Matrix math Library
#include // Mission command library
#include // Camera/Antenna mount
#include
#include
#include
#include // Notify library
#include // Optical Flow library
#include
#include // Range finder library
#include // RC input mapping library
#include // APM relay
#include
#include // RSSI Library
#include // main loop scheduler
#include // Serial manager library
#include
#include
#include // statistics library
#include
#include // needed for AHRS build
#include
#include
#include
#include
#include
#include
#include
#include // Mode Filter from Filter library
#include // Filter library - butterworth filter
#include // Filter library
#include
#include // Mode Filter from Filter library
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef ENABLE_SCRIPTING
#include
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include
#endif
// Local modules
#include "AP_MotorsUGV.h"
#include "mode.h"
#include "AP_Arming.h"
#include "sailboat.h"
// Configuration
#include "config.h"
#include "defines.h"
#if ADVANCED_FAILSAFE == ENABLED
#include "afs_rover.h"
#endif
#include "Parameters.h"
#include "GCS_Mavlink.h"
#include "GCS_Rover.h"
#include "AP_Rally.h"
#include "RC_Channel.h" // RC Channel Library
class Rover : public AP_HAL::HAL::Callbacks {
public:
friend class GCS_MAVLINK_Rover;
friend class Parameters;
friend class ParametersG2;
friend class AP_Rally_Rover;
friend class AP_Arming_Rover;
#if ADVANCED_FAILSAFE == ENABLED
friend class AP_AdvancedFailsafe_Rover;
#endif
friend class GCS_Rover;
friend class Mode;
friend class ModeAcro;
friend class ModeAuto;
friend class ModeGuided;
friend class ModeHold;
friend class ModeLoiter;
friend class ModeSteering;
friend class ModeManual;
friend class ModeRTL;
friend class ModeSmartRTL;
friend class ModeFollow;
friend class ModeSimple;
friend class RC_Channel_Rover;
friend class RC_Channels_Rover;
friend class Sailboat;
Rover(void);
// HAL::Callbacks implementation.
void setup(void) override;
void loop(void) override;
private:
// must be the first AP_Param variable declared to ensure its
// constructor runs before the constructors of the other AP_Param
// variables
AP_Param param_loader;
// all settable parameters
Parameters g;
ParametersG2 g2;
// main loop scheduler
AP_Scheduler scheduler;
// mapping between input channels
RCMapper rcmap;
// board specific config
AP_BoardConfig BoardConfig;
#if HAL_WITH_UAVCAN
// board specific config for CAN bus
AP_BoardConfig_CAN BoardConfig_CAN;
#endif
// primary control channels
RC_Channel *channel_steer;
RC_Channel *channel_throttle;
RC_Channel *channel_lateral;
AP_Logger logger;
// sensor drivers
AP_GPS gps;
AP_Baro barometer;
Compass compass;
AP_InertialSensor ins;
RangeFinder rangefinder;
AP_Button button;
// flight modes convenience array
AP_Int8 *modes;
const uint8_t num_modes = 6;
// AP_RPM Module
AP_RPM rpm_sensor;
// Inertial Navigation EKF
#if AP_AHRS_NAVEKF_AVAILABLE
NavEKF2 EKF2{&ahrs, rangefinder};
NavEKF3 EKF3{&ahrs, rangefinder};
AP_AHRS_NavEKF ahrs{EKF2, EKF3};
#else
AP_AHRS_DCM ahrs;
#endif
// Arming/Disarming management class
AP_Arming_Rover arming;
AP_L1_Control L1_controller{ahrs, nullptr};
#if AP_AHRS_NAVEKF_AVAILABLE
OpticalFlow optflow;
#endif
// RSSI
AP_RSSI rssi;
#if OSD_ENABLED == ENABLED
AP_OSD osd;
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL::SITL sitl;
#endif
AP_SerialManager serial_manager;
// GCS handling
GCS_Rover _gcs; // avoid using this; use gcs()
GCS_Rover &gcs() { return _gcs; }
// RC Channels:
RC_Channels_Rover &rc() { return g2.rc_channels; }
// relay support
AP_Relay relay;
AP_ServoRelayEvents ServoRelayEvents;
// The rover's current location
struct Location current_loc;
// Camera
#if CAMERA == ENABLED
AP_Camera camera{MASK_LOG_CAMERA, current_loc};
#endif
// Camera/Antenna mount tracking and stabilisation stuff
#if MOUNT == ENABLED
// current_loc uses the baro/gps solution for altitude rather than gps only.
AP_Mount camera_mount{current_loc};
#endif
// true if initialisation has completed
bool initialised;
// This is the state of the flight control system
// There are multiple states defined such as MANUAL, AUTO, ...
Mode *control_mode;
mode_reason_t control_mode_reason = MODE_REASON_INITIALISED;
// Used to maintain the state of the previous control switch position
// This is set to -1 when we need to re-read the switch
uint8_t oldSwitchPosition;
// structure for holding failsafe state
struct {
uint8_t bits; // bit flags of failsafes that have started (but not necessarily triggered an action)
uint32_t start_time; // start time of the earliest failsafe
uint8_t triggered; // bit flags of failsafes that have triggered an action
uint32_t last_valid_rc_ms; // system time of most recent RC input from pilot
uint32_t last_heartbeat_ms; // system time of most recent heartbeat from ground station
bool ekf;
} failsafe;
// notification object for LEDs, buzzers etc (parameter set to false disables external leds)
AP_Notify notify;
// true if we have a position estimate from AHRS
bool have_position;
// obstacle detection information
struct {
// have we detected an obstacle?
uint8_t detected_count;
float turn_angle;
uint16_t rangefinder1_distance_cm;
uint16_t rangefinder2_distance_cm;
// time when we last detected an obstacle, in milliseconds
uint32_t detected_time_ms;
} obstacle;
// range finder last update (used for DPTH logging)
uint32_t rangefinder_last_reading_ms;
// Ground speed
// The amount current ground speed is below min ground speed. meters per second
float ground_speed;
// Battery Sensors
AP_BattMonitor battery{MASK_LOG_CURRENT,
FUNCTOR_BIND_MEMBER(&Rover::handle_battery_failsafe, void, const char*, const int8_t),
_failsafe_priorities};
// true if the compass's initial location has been set
bool compass_init_location;
// IMU variables
// The main loop execution time. Seconds
// This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
float G_Dt;
// flyforward timer
uint32_t flyforward_start_ms;
static const AP_Scheduler::Task scheduler_tasks[];
static const AP_Param::Info var_info[];
static const LogStructure log_structure[];
// time that rudder/steering arming has been running
uint32_t rudder_arm_timer;
// Store the time the last GPS message was received.
uint32_t last_gps_msg_ms{0};
// last wheel encoder update times
float wheel_encoder_last_angle_rad[WHEELENCODER_MAX_INSTANCES]; // distance in radians at time of last update to EKF
float wheel_encoder_last_distance_m[WHEELENCODER_MAX_INSTANCES]; // distance in meters at time of last update to EKF (for reporting to GCS)
uint32_t wheel_encoder_last_update_ms[WHEELENCODER_MAX_INSTANCES]; // system time of last ping from each encoder
uint32_t wheel_encoder_last_ekf_update_ms; // system time of last encoder data push to EKF
// True when we are doing motor test
bool motor_test;
ModeInitializing mode_initializing;
ModeHold mode_hold;
ModeManual mode_manual;
ModeAcro mode_acro;
ModeGuided mode_guided;
ModeAuto mode_auto;
ModeLoiter mode_loiter;
ModeSteering mode_steering;
ModeRTL mode_rtl;
ModeSmartRTL mode_smartrtl;
ModeFollow mode_follow;
ModeSimple mode_simple;
// cruise throttle and speed learning
typedef struct {
LowPassFilterFloat speed_filt = LowPassFilterFloat(2.0f);
LowPassFilterFloat throttle_filt = LowPassFilterFloat(2.0f);
uint32_t learn_start_ms;
uint32_t log_count;
} cruise_learn_t;
cruise_learn_t cruise_learn;
private:
// APMrover2.cpp
void stats_update();
void ahrs_update();
void gcs_failsafe_check(void);
void update_logging1(void);
void update_logging2(void);
void one_second_loop(void);
void update_GPS(void);
void update_current_mode(void);
void update_mission(void);
// balance_bot.cpp
void balancebot_pitch_control(float &throttle);
bool is_balancebot() const;
// commands.cpp
bool set_home_to_current_location(bool lock) WARN_IF_UNUSED;
bool set_home(const Location& loc, bool lock) WARN_IF_UNUSED;
void update_home();
// compat.cpp
void delay(uint32_t ms);
// crash_check.cpp
void crash_check();
// cruise_learn.cpp
void cruise_learn_start();
void cruise_learn_update();
void cruise_learn_complete();
void log_write_cruise_learn();
// ekf_check.cpp
void ekf_check();
bool ekf_over_threshold();
bool ekf_position_ok();
void failsafe_ekf_event();
void failsafe_ekf_off_event(void);
// failsafe.cpp
void failsafe_trigger(uint8_t failsafe_type, bool on);
void handle_battery_failsafe(const char* type_str, const int8_t action);
#if ADVANCED_FAILSAFE == ENABLED
void afs_fs_check(void);
#endif
// fence.cpp
void fence_check();
// GCS_Mavlink.cpp
void send_servo_out(mavlink_channel_t chan);
void send_wheel_encoder_distance(mavlink_channel_t chan);
// Log.cpp
void Log_Write_Attitude();
void Log_Write_Depth();
void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target);
void Log_Write_Nav_Tuning();
void Log_Write_Sail();
void Log_Write_Startup(uint8_t type);
void Log_Write_Steering();
void Log_Write_Throttle();
void Log_Write_Rangefinder();
void Log_Write_RC(void);
void Log_Write_Vehicle_Startup_Messages();
void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page);
void log_init(void);
// mode.cpp
Mode *mode_from_mode_num(enum Mode::Number num);
// Parameters.cpp
void load_parameters(void);
// radio.cpp
void set_control_channels(void);
void init_rc_in();
void rudder_arm_disarm_check();
void read_radio();
void radio_failsafe_check(uint16_t pwm);
bool trim_radio();
// sensors.cpp
void init_compass_location(void);
void update_compass(void);
void compass_save(void);
void init_beacon();
void init_visual_odom();
void update_wheel_encoder();
void accel_cal_update(void);
void read_rangefinders(void);
void init_proximity();
void read_airspeed();
void rpm_update(void);
// Steering.cpp
void set_servos(void);
// system.cpp
void init_ardupilot();
void startup_ground(void);
void update_ahrs_flyforward();
bool set_mode(Mode &new_mode, mode_reason_t reason);
bool mavlink_set_mode(uint8_t mode);
void startup_INS_ground(void);
void print_mode(AP_HAL::BetterStream *port, uint8_t mode);
void notify_mode(const Mode *new_mode);
uint8_t check_digital_pin(uint8_t pin);
bool should_log(uint32_t mask);
bool is_boat() const;
enum Failsafe_Action {
Failsafe_Action_None = 0,
Failsafe_Action_RTL = 1,
Failsafe_Action_Hold = 2,
Failsafe_Action_SmartRTL = 3,
Failsafe_Action_SmartRTL_Hold = 4,
Failsafe_Action_Terminate = 5
};
static constexpr int8_t _failsafe_priorities[] = {
Failsafe_Action_Terminate,
Failsafe_Action_Hold,
Failsafe_Action_RTL,
Failsafe_Action_SmartRTL_Hold,
Failsafe_Action_SmartRTL,
Failsafe_Action_None,
-1 // the priority list must end with a sentinel of -1
};
static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1,
"_failsafe_priorities is missing the sentinel");
public:
void mavlink_delay_cb();
void failsafe_check();
// Motor test
void motor_test_output();
bool mavlink_motor_test_check(mavlink_channel_t chan, bool check_rc, uint8_t motor_seq, uint8_t throttle_type, int16_t throttle_value);
MAV_RESULT mavlink_motor_test_start(mavlink_channel_t chan, uint8_t motor_seq, uint8_t throttle_type, int16_t throttle_value, float timeout_sec);
void motor_test_stop();
// frame type
uint8_t get_frame_type() { return g2.frame_type.get(); }
AP_WheelRateControl& get_wheel_rate_control() { return g2.wheel_rate_control; }
// Simple mode
float simple_sin_yaw;
// sailboat enabled
bool get_sailboat_enable() { return g2.sailboat.enabled(); }
};
extern const AP_HAL::HAL& hal;
extern Rover rover;
using AP_HAL::millis;
using AP_HAL::micros;