#include "AC_AutoTune.h" #include <GCS_MAVLink/GCS.h> #include <AP_Scheduler/AP_Scheduler.h> #define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) # define AUTOTUNE_LEVEL_ANGLE_CD 500 // angle which qualifies as level (Plane uses more relaxed 5deg) # define AUTOTUNE_LEVEL_RATE_RP_CD 1000 // rate which qualifies as level for roll and pitch (Plane uses more relaxed 10deg/sec) #else # define AUTOTUNE_LEVEL_ANGLE_CD 250 // angle which qualifies as level # define AUTOTUNE_LEVEL_RATE_RP_CD 500 // rate which qualifies as level for roll and pitch #endif #define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw #define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the aircraft to be level #define AUTOTUNE_LEVEL_TIMEOUT_MS 2000 // time out for level #define AUTOTUNE_LEVEL_WARNING_INTERVAL_MS 5000 // level failure warning messages sent at this interval to users #define AUTOTUNE_ANGLE_MAX_RLLPIT 30.0f // maximum allowable angle in degrees during testing AC_AutoTune::AC_AutoTune() { } // autotune_init - should be called when autotune mode is selected bool AC_AutoTune::init_internals(bool _use_poshold, AC_AttitudeControl *_attitude_control, AC_PosControl *_pos_control, AP_AHRS_View *_ahrs_view, AP_InertialNav *_inertial_nav) { use_poshold = _use_poshold; attitude_control = _attitude_control; pos_control = _pos_control; ahrs_view = _ahrs_view; inertial_nav = _inertial_nav; motors = AP_Motors::get_singleton(); // exit immediately if motor are not armed if ((motors == nullptr) || !motors->armed()) { return false; } // initialise position controller init_position_controller(); switch (mode) { case FAILED: // fall through to restart the tuning FALLTHROUGH; case UNINITIALISED: // autotune has never been run // so store current gains as original gains backup_gains_and_initialise(); // advance mode to tuning mode = TUNING; // send message to ground station that we've started tuning update_gcs(AUTOTUNE_MESSAGE_STARTED); break; case TUNING: // reset test variables for each vehicle reset_vehicle_test_variables(); // we are restarting tuning so restart where we left off step = WAITING_FOR_LEVEL; step_start_time_ms = AP_HAL::millis(); level_start_time_ms = step_start_time_ms; // reset gains to tuning-start gains (i.e. low I term) load_gains(GAIN_INTRA_TEST); AP::logger().Write_Event(LogEvent::AUTOTUNE_RESTART); update_gcs(AUTOTUNE_MESSAGE_STARTED); break; case SUCCESS: // we have completed a tune and the pilot wishes to test the new gains load_gains(GAIN_TUNED); update_gcs(AUTOTUNE_MESSAGE_TESTING); AP::logger().Write_Event(LogEvent::AUTOTUNE_PILOT_TESTING); break; } have_position = false; return true; } // stop - should be called when the ch7/ch8 switch is switched OFF void AC_AutoTune::stop() { // set gains to their original values load_gains(GAIN_ORIGINAL); // re-enable angle-to-rate request limits attitude_control->use_sqrt_controller(true); update_gcs(AUTOTUNE_MESSAGE_STOPPED); AP::logger().Write_Event(LogEvent::AUTOTUNE_OFF); // Note: we leave the mode as it was so that we know how the autotune ended // we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch } // initialise position controller bool AC_AutoTune::init_position_controller(void) { // initialize vertical maximum speeds and acceleration init_z_limits(); // initialise the vertical position controller pos_control->init_z_controller(); return true; } void AC_AutoTune::send_step_string() { if (pilot_override) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Paused: Pilot Override Active"); return; } switch (step) { case WAITING_FOR_LEVEL: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Leveling"); return; case UPDATE_GAINS: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Updating Gains"); return; case TESTING: gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Testing"); return; } gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: unknown step"); } const char *AC_AutoTune::type_string() const { switch (tune_type) { case RD_UP: return "Rate D Up"; case RD_DOWN: return "Rate D Down"; case RP_UP: return "Rate P Up"; case RFF_UP: return "Rate FF Up"; case SP_UP: return "Angle P Up"; case SP_DOWN: return "Angle P Down"; case MAX_GAINS: return "Find Max Gains"; case TUNE_COMPLETE: return "Tune Complete"; } return ""; // this should never happen INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); } // return current axis string const char *AC_AutoTune::axis_string() const { switch (axis) { case ROLL: return "Roll"; case PITCH: return "Pitch"; case YAW: return "Yaw"; } return ""; } // run - runs the autotune flight mode // should be called at 100hz or more void AC_AutoTune::run() { // initialize vertical speeds and acceleration init_z_limits(); // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately // this should not actually be possible because of the init() checks if (!motors->armed() || !motors->get_interlock()) { motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); attitude_control->set_throttle_out(0.0f, true, 0.0f); pos_control->relax_z_controller(0.0f); return; } float target_roll_cd, target_pitch_cd, target_yaw_rate_cds; get_pilot_desired_rp_yrate_cd(target_roll_cd, target_pitch_cd, target_yaw_rate_cds); // get pilot desired climb rate const float target_climb_rate_cms = get_pilot_desired_climb_rate_cms(); const bool zero_rp_input = is_zero(target_roll_cd) && is_zero(target_pitch_cd); const uint32_t now = AP_HAL::millis(); if (!zero_rp_input || !is_zero(target_yaw_rate_cds) || !is_zero(target_climb_rate_cms)) { if (!pilot_override) { pilot_override = true; // set gains to their original values load_gains(GAIN_ORIGINAL); attitude_control->use_sqrt_controller(true); } // reset pilot override time override_time = now; if (!zero_rp_input) { // only reset position on roll or pitch input have_position = false; } } else if (pilot_override) { // check if we should resume tuning after pilot's override if (now - override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) { pilot_override = false; // turn off pilot override // set gains to their intra-test values (which are very close to the original gains) // load_gains(GAIN_INTRA_TEST); //I think we should be keeping the originals here to let the I term settle quickly step = WAITING_FOR_LEVEL; // set tuning step back from beginning step_start_time_ms = now; level_start_time_ms = now; desired_yaw_cd = ahrs_view->yaw_sensor; } } if (pilot_override) { if (now - last_pilot_override_warning > 1000) { gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: pilot overrides active"); last_pilot_override_warning = now; } } if (zero_rp_input) { // pilot input on throttle and yaw will still use position hold if enabled get_poshold_attitude(target_roll_cd, target_pitch_cd, desired_yaw_cd); } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // if pilot override call attitude controller if (pilot_override || mode != TUNING) { attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll_cd, target_pitch_cd, target_yaw_rate_cds); } else { // somehow get attitude requests from autotuning control_attitude(); // tell the user what's going on do_gcs_announcements(); } // call position controller pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate_cms); pos_control->update_z_controller(); } // return true if vehicle is close to level bool AC_AutoTune::currently_level() { float threshold_mul = 1.0; uint32_t now_ms = AP_HAL::millis(); if (now_ms - level_start_time_ms > AUTOTUNE_LEVEL_TIMEOUT_MS) { // after a long wait we use looser threshold, to allow tuning // with poor initial gains threshold_mul *= 2; } // display warning if vehicle fails to level if ((now_ms - level_start_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS) && (now_ms - level_fail_warning_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS)) { gcs().send_text(MAV_SEVERITY_CRITICAL, "AutoTune: failing to level, please tune manually"); level_fail_warning_time_ms = now_ms; } if (fabsf(ahrs_view->roll_sensor - roll_cd) > threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD) { return false; } if (fabsf(ahrs_view->pitch_sensor - pitch_cd) > threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD) { return false; } if (fabsf(wrap_180_cd(ahrs_view->yaw_sensor - desired_yaw_cd)) > threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD) { return false; } if ((ToDeg(ahrs_view->get_gyro().x) * 100.0f) > threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD) { return false; } if ((ToDeg(ahrs_view->get_gyro().y) * 100.0f) > threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD) { return false; } if ((ToDeg(ahrs_view->get_gyro().z) * 100.0f) > threshold_mul*AUTOTUNE_LEVEL_RATE_Y_CD) { return false; } return true; } // main state machine to level vehicle, perform a test and update gains // directly updates attitude controller with targets void AC_AutoTune::control_attitude() { rotation_rate = 0.0f; // rotation rate in radians/second lean_angle = 0.0f; const float direction_sign = positive_direction ? 1.0f : -1.0f; const uint32_t now = AP_HAL::millis(); // check tuning step switch (step) { case WAITING_FOR_LEVEL: { // Note: we should be using intra-test gains (which are very close to the original gains but have lower I) // re-enable rate limits attitude_control->use_sqrt_controller(true); get_poshold_attitude(roll_cd, pitch_cd, desired_yaw_cd); // hold level attitude attitude_control->input_euler_angle_roll_pitch_yaw(roll_cd, pitch_cd, desired_yaw_cd, true); // hold the copter level for 0.5 seconds before we begin a twitch // reset counter if we are no longer level if (!currently_level()) { step_start_time_ms = now; } // if we have been level for a sufficient amount of time (0.5 seconds) move onto tuning step if (now - step_start_time_ms > AUTOTUNE_REQUIRED_LEVEL_TIME_MS) { // initiate variables for next step step = TESTING; step_start_time_ms = now; step_time_limit_ms = get_testing_step_timeout_ms(); // set gains to their to-be-tested values twitch_first_iter = true; test_rate_max = 0.0f; test_rate_min = 0.0f; test_angle_max = 0.0f; test_angle_min = 0.0f; rotation_rate_filt.reset(0.0f); rate_max = 0.0f; load_gains(GAIN_TEST); } else { // when waiting for level we use the intra-test gains load_gains(GAIN_INTRA_TEST); } // Initialize test-specific variables switch (axis) { case ROLL: abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD; start_rate = ToDeg(ahrs_view->get_gyro().x) * 100.0f; start_angle = ahrs_view->roll_sensor; break; case PITCH: abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD; start_rate = ToDeg(ahrs_view->get_gyro().y) * 100.0f; start_angle = ahrs_view->pitch_sensor; break; case YAW: abort_angle = AUTOTUNE_TARGET_ANGLE_YAW_CD; start_rate = ToDeg(ahrs_view->get_gyro().z) * 100.0f; start_angle = ahrs_view->yaw_sensor; break; } // tests must be initialized last as some rely on variables above test_init(); break; } case TESTING: { // Run the twitching step load_gains(GAIN_TEST); // run the test test_run(axis, direction_sign); // Check for failure causing reverse response if (lean_angle <= -AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD) { step = WAITING_FOR_LEVEL; } // protect from roll over float resultant_angle = degrees(acosf(ahrs_view->cos_roll() * ahrs_view->cos_pitch())); if (resultant_angle > AUTOTUNE_ANGLE_MAX_RLLPIT) { step = WAITING_FOR_LEVEL; } // log this iterations lean angle and rotation rate Log_AutoTuneDetails(); ahrs_view->Write_Rate(*motors, *attitude_control, *pos_control); log_pids(); break; } case UPDATE_GAINS: // re-enable rate limits attitude_control->use_sqrt_controller(true); // log the latest gains Log_AutoTune(); // Announce tune type test results // must be done before updating method because this method changes parameters for next test do_post_test_gcs_announcements(); switch (tune_type) { // Check results after mini-step to increase rate D gain case RD_UP: updating_rate_d_up_all(axis); break; // Check results after mini-step to decrease rate D gain case RD_DOWN: updating_rate_d_down_all(axis); break; // Check results after mini-step to increase rate P gain case RP_UP: updating_rate_p_up_all(axis); break; // Check results after mini-step to increase stabilize P gain case SP_DOWN: updating_angle_p_down_all(axis); break; // Check results after mini-step to increase stabilize P gain case SP_UP: updating_angle_p_up_all(axis); break; case RFF_UP: updating_rate_ff_up_all(axis); break; case MAX_GAINS: updating_max_gains_all(axis); break; case TUNE_COMPLETE: break; } // we've complete this step, finalize pids and move to next step if (counter >= AUTOTUNE_SUCCESS_COUNT) { // reset counter counter = 0; // reset scaling factor step_scaler = 1.0f; // set gains for post tune before moving to the next tuning type set_gains_post_tune(axis); // increment the tune type to the next one in tune sequence next_tune_type(tune_type, false); if (tune_type == TUNE_COMPLETE) { // we've reached the end of a D-up-down PI-up-down tune type cycle next_tune_type(tune_type, true); report_final_gains(axis); // advance to the next axis bool complete = false; switch (axis) { case ROLL: axes_completed |= AUTOTUNE_AXIS_BITMASK_ROLL; if (pitch_enabled()) { axis = PITCH; } else if (yaw_enabled()) { axis = YAW; } else { complete = true; } break; case PITCH: axes_completed |= AUTOTUNE_AXIS_BITMASK_PITCH; if (yaw_enabled()) { axis = YAW; } else { complete = true; } break; case YAW: axes_completed |= AUTOTUNE_AXIS_BITMASK_YAW; complete = true; break; } // if we've just completed all axes we have successfully completed the autotune // change to TESTING mode to allow user to fly with new gains if (complete) { mode = SUCCESS; update_gcs(AUTOTUNE_MESSAGE_SUCCESS); AP::logger().Write_Event(LogEvent::AUTOTUNE_SUCCESS); AP_Notify::events.autotune_complete = true; } else { AP_Notify::events.autotune_next_axis = true; reset_update_gain_variables(); } } } // reverse direction for multicopter twitch test positive_direction = twitch_reverse_direction(); if (axis == YAW) { attitude_control->input_euler_angle_roll_pitch_yaw(0.0f, 0.0f, ahrs_view->yaw_sensor, false); } // set gains to their intra-test values (which are very close to the original gains) load_gains(GAIN_INTRA_TEST); // reset testing step step = WAITING_FOR_LEVEL; step_start_time_ms = now; level_start_time_ms = step_start_time_ms; step_time_limit_ms = AUTOTUNE_REQUIRED_LEVEL_TIME_MS; break; } } // backup_gains_and_initialise - store current gains as originals // called before tuning starts to backup original gains void AC_AutoTune::backup_gains_and_initialise() { // initialise state because this is our first time if (roll_enabled()) { axis = ROLL; } else if (pitch_enabled()) { axis = PITCH; } else if (yaw_enabled()) { axis = YAW; } // no axes are complete axes_completed = 0; // reset update gain variables for each vehicle reset_update_gain_variables(); // start at the beginning of tune sequence next_tune_type(tune_type, true); positive_direction = false; step = WAITING_FOR_LEVEL; step_start_time_ms = AP_HAL::millis(); level_start_time_ms = step_start_time_ms; step_scaler = 1.0f; desired_yaw_cd = ahrs_view->yaw_sensor; } /* load a specified set of gains */ void AC_AutoTune::load_gains(enum GainType gain_type) { switch (gain_type) { case GAIN_ORIGINAL: load_orig_gains(); break; case GAIN_INTRA_TEST: load_intra_test_gains(); break; case GAIN_TEST: load_test_gains(); break; case GAIN_TUNED: load_tuned_gains(); break; } } // update_gcs - send message to ground station void AC_AutoTune::update_gcs(uint8_t message_id) const { switch (message_id) { case AUTOTUNE_MESSAGE_STARTED: gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Started"); break; case AUTOTUNE_MESSAGE_STOPPED: gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Stopped"); break; case AUTOTUNE_MESSAGE_SUCCESS: gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Success"); break; case AUTOTUNE_MESSAGE_FAILED: gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Failed"); break; case AUTOTUNE_MESSAGE_TESTING: gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Pilot Testing"); break; case AUTOTUNE_MESSAGE_SAVED_GAINS: gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Saved gains for %s%s%s", (axes_completed&AUTOTUNE_AXIS_BITMASK_ROLL)?"Roll ":"", (axes_completed&AUTOTUNE_AXIS_BITMASK_PITCH)?"Pitch ":"", (axes_completed&AUTOTUNE_AXIS_BITMASK_YAW)?"Yaw":""); break; } } // axis helper functions bool AC_AutoTune::roll_enabled() const { return get_axis_bitmask() & AUTOTUNE_AXIS_BITMASK_ROLL; } bool AC_AutoTune::pitch_enabled() const { return get_axis_bitmask() & AUTOTUNE_AXIS_BITMASK_PITCH; } bool AC_AutoTune::yaw_enabled() const { return get_axis_bitmask() & AUTOTUNE_AXIS_BITMASK_YAW; } /* check if we have a good position estimate */ bool AC_AutoTune::position_ok(void) { if (!AP::ahrs().have_inertial_nav()) { // do not allow navigation with dcm position return false; } // with EKF use filter status and ekf check nav_filter_status filt_status = inertial_nav->get_filter_status(); // require a good absolute position and EKF must not be in const_pos_mode return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); } // get attitude for slow position hold in autotune mode void AC_AutoTune::get_poshold_attitude(float &roll_cd_out, float &pitch_cd_out, float &yaw_cd_out) { roll_cd_out = pitch_cd_out = 0; if (!use_poshold) { // we are not trying to hold position return; } // do we know where we are? If not then don't do poshold if (!position_ok()) { return; } if (!have_position) { have_position = true; start_position = inertial_nav->get_position_neu_cm(); } // don't go past 10 degrees, as autotune result would deteriorate too much const float angle_max_cd = 1000; // hit the 10 degree limit at 20 meters position error const float dist_limit_cm = 2000; // we only start adjusting yaw if we are more than 5m from the // target position. That corresponds to a lean angle of 2.5 degrees const float yaw_dist_limit_cm = 500; Vector3f pdiff = inertial_nav->get_position_neu_cm() - start_position; pdiff.z = 0; float dist_cm = pdiff.length(); if (dist_cm < 10) { // don't do anything within 10cm return; } /* very simple linear controller */ float scaling = constrain_float(angle_max_cd * dist_cm / dist_limit_cm, 0, angle_max_cd); Vector2f angle_ne(pdiff.x, pdiff.y); angle_ne *= scaling / dist_cm; // rotate into body frame pitch_cd_out = angle_ne.x * ahrs_view->cos_yaw() + angle_ne.y * ahrs_view->sin_yaw(); roll_cd_out = angle_ne.x * ahrs_view->sin_yaw() - angle_ne.y * ahrs_view->cos_yaw(); if (dist_cm < yaw_dist_limit_cm) { // no yaw adjustment return; } /* also point so that twitching occurs perpendicular to the wind, if we have drifted more than yaw_dist_limit_cm from the desired position. This ensures that autotune doesn't have to deal with more than 2.5 degrees of attitude on the axis it is tuning */ float target_yaw_cd = degrees(atan2f(pdiff.y, pdiff.x)) * 100; if (axis == PITCH) { // for roll and yaw tuning we point along the wind, for pitch // we point across the wind target_yaw_cd += 9000; } // go to the nearest 180 degree mark, with 5 degree slop to prevent oscillation if (fabsf(yaw_cd_out - target_yaw_cd) > 9500) { target_yaw_cd += 18000; } yaw_cd_out = target_yaw_cd; } // get the next tune type void AC_AutoTune::next_tune_type(TuneType &curr_tune_type, bool reset) { if (reset) { set_tune_sequence(); tune_seq_curr = 0; } else if (curr_tune_type == TUNE_COMPLETE) { // leave tune_type as TUNE_COMPLETE to initiate next axis or exit autotune return; } else { tune_seq_curr++; } curr_tune_type = tune_seq[tune_seq_curr]; }