// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #ifndef AP_MATH_H #define AP_MATH_H // Assorted useful math operations for ArduPilot(Mega) #include #include #include #ifdef __AVR__ # include #endif #include #include "rotations.h" #include "vector2.h" #include "vector3.h" #include "matrix3.h" #include "quaternion.h" #include "polygon.h" #include "edc.h" #ifndef M_PI_F #define M_PI_F 3.141592653589793f #endif #ifndef PI # define PI M_PI_F #endif #ifndef M_PI_2 # define M_PI_2 1.570796326794897f #endif //Single precision conversions #define DEG_TO_RAD 0.017453292519943295769236907684886f #define RAD_TO_DEG 57.295779513082320876798154814105f //GPS Specific double precision conversions //The precision here does matter when using the wsg* functions for converting //between LLH and ECEF coordinates. Test code in examlpes/location/location.pde #if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 #define DEG_TO_RAD_DOUBLE 0.0174532925199432954743716805978692718781530857086181640625 // equals to (M_PI / 180.0) #define RAD_TO_DEG_DOUBLE 57.29577951308232286464772187173366546630859375 // equals to (180.0 / M_PI) #endif #define RadiansToCentiDegrees(x) ((x) * 5729.5779513082320876798154814105f) // acceleration due to gravity in m/s/s #define GRAVITY_MSS 9.80665f // radius of earth in meters #define RADIUS_OF_EARTH 6378100 #define ROTATION_COMBINATION_SUPPORT 0 // convert a longitude or latitude point to meters or centimeteres. // Note: this does not include the longitude scaling which is dependent upon location #define LATLON_TO_M 0.01113195f #define LATLON_TO_CM 1.113195f // Semi-major axis of the Earth, in meters. #define WGS84_A 6378137.0 //Inverse flattening of the Earth #define WGS84_IF 298.257223563 // The flattening of the Earth #define WGS84_F (1/WGS84_IF) // Semi-minor axis of the Earth in meters #define WGS84_B (WGS84_A*(1-WGS84_F)) // Eccentricity of the Earth #define WGS84_E (sqrt(2*WGS84_F - WGS84_F*WGS84_F)) // define AP_Param types AP_Vector3f and Ap_Matrix3f AP_PARAMDEFV(Matrix3f, Matrix3f, AP_PARAM_MATRIX3F); AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F); // a varient of asin() that always gives a valid answer. float safe_asin(float v); // a varient of sqrt() that always gives a valid answer. float safe_sqrt(float v); // a faster varient of atan. accurate to 6 decimal places for values between -1 ~ 1 but then diverges quickly float fast_atan(float v); #if ROTATION_COMBINATION_SUPPORT // find a rotation that is the combination of two other // rotations. This is used to allow us to add an overall board // rotation to an existing rotation of a sensor such as the compass enum Rotation rotation_combination(enum Rotation r1, enum Rotation r2, bool *found = NULL); #endif // longitude_scale - returns the scaler to compensate for shrinking longitude as you move north or south from the equator // Note: this does not include the scaling to convert longitude/latitude points to meters or centimeters float longitude_scale(const struct Location &loc); // return distance in meters between two locations float get_distance(const struct Location &loc1, const struct Location &loc2); // return distance in centimeters between two locations uint32_t get_distance_cm(const struct Location &loc1, const struct Location &loc2); // return bearing in centi-degrees between two locations int32_t get_bearing_cd(const struct Location &loc1, const struct Location &loc2); // see if location is past a line perpendicular to // the line between point1 and point2. If point1 is // our previous waypoint and point2 is our target waypoint // then this function returns true if we have flown past // the target waypoint bool location_passed_point(const struct Location & location, const struct Location & point1, const struct Location & point2); // extrapolate latitude/longitude given bearing and distance void location_update(struct Location &loc, float bearing, float distance); // extrapolate latitude/longitude given distances north and east void location_offset(struct Location &loc, float ofs_north, float ofs_east); /* return the distance in meters in North/East plane as a N/E vector from loc1 to loc2 */ Vector2f location_diff(const struct Location &loc1, const struct Location &loc2); /* wrap an angle in centi-degrees */ int32_t wrap_360_cd(int32_t error); int32_t wrap_180_cd(int32_t error); float wrap_360_cd_float(float angle); float wrap_180_cd_float(float angle); /* wrap an angle defined in radians to -PI ~ PI (equivalent to +- 180 degrees) */ float wrap_PI(float angle_in_radians); /* print a int32_t lat/long in decimal degrees */ void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon); #if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 //Convert between LLH and ECEF coordinate systems void wgsllh2ecef(const Vector3d &llh, Vector3d &ecef); void wgsecef2llh(const Vector3d &ecef, Vector3d &llh); #endif // constrain a value float constrain_float(float amt, float low, float high); int16_t constrain_int16(int16_t amt, int16_t low, int16_t high); int32_t constrain_int32(int32_t amt, int32_t low, int32_t high); // degrees -> radians float radians(float deg); // radians -> degrees float degrees(float rad); // square float sq(float v); // sqrt of sum of squares float pythagorous2(float a, float b); float pythagorous3(float a, float b, float c); #ifdef radians #error "Build is including Arduino base headers" #endif /* The following three functions used to be arduino core macros */ #define max(a,b) ((a)>(b)?(a):(b)) #define min(a,b) ((a)<(b)?(a):(b)) #endif // AP_MATH_H