/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "AP_Baro_BMP085.h"
#include
#include
#include
#include
extern const AP_HAL::HAL &hal;
#define BMP085_OVERSAMPLING_ULTRALOWPOWER 0
#define BMP085_OVERSAMPLING_STANDARD 1
#define BMP085_OVERSAMPLING_HIGHRES 2
#define BMP085_OVERSAMPLING_ULTRAHIGHRES 3
#ifndef BMP085_EOC
#define BMP085_EOC -1
#define OVERSAMPLING BMP085_OVERSAMPLING_ULTRAHIGHRES
#else
#define OVERSAMPLING BMP085_OVERSAMPLING_HIGHRES
#endif
AP_Baro_BMP085::AP_Baro_BMP085(AP_Baro &baro, AP_HAL::OwnPtr dev)
: AP_Baro_Backend(baro)
, _dev(std::move(dev))
{ }
AP_Baro_Backend * AP_Baro_BMP085::probe(AP_Baro &baro, AP_HAL::OwnPtr dev)
{
if (!dev) {
return nullptr;
}
AP_Baro_BMP085 *sensor = new AP_Baro_BMP085(baro, std::move(dev));
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Baro_BMP085::_init()
{
union {
uint8_t buff[22];
uint16_t wb[11];
} bb;
// get pointer to i2c bus semaphore
AP_HAL::Semaphore *sem = _dev->get_semaphore();
// take i2c bus sempahore
if (!sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
AP_HAL::panic("BMP085: unable to get semaphore");
}
if (BMP085_EOC >= 0) {
_eoc = hal.gpio->channel(BMP085_EOC);
_eoc->mode(HAL_GPIO_INPUT);
}
uint8_t id;
if (!_dev->read_registers(0xD0, &id, 1)) {
sem->give();
return false;
}
if (id!=0x55) {
return false; // not BMP180
}
_dev->read_registers(0xD1, &_vers, 1);
bool prom_ok=false;
_type=0;
// We read the calibration data registers
if (_dev->read_registers(0xAA, bb.buff, sizeof(bb.buff))) {
prom_ok=true;
}
if (!prom_ok) {
if (_read_prom((uint16_t *)&bb.wb[0])) { // BMP180 requires reads by 2 bytes
prom_ok=true;
_type=1;
}
}
if (!prom_ok) {
sem->give();
return false;
}
ac1 = ((int16_t)bb.buff[0] << 8) | bb.buff[1];
ac2 = ((int16_t)bb.buff[2] << 8) | bb.buff[3];
ac3 = ((int16_t)bb.buff[4] << 8) | bb.buff[5];
ac4 = ((int16_t)bb.buff[6] << 8) | bb.buff[7];
ac5 = ((int16_t)bb.buff[8] << 8) | bb.buff[9];
ac6 = ((int16_t)bb.buff[10]<< 8) | bb.buff[11];
b1 = ((int16_t)bb.buff[12] << 8) | bb.buff[13];
b2 = ((int16_t)bb.buff[14] << 8) | bb.buff[15];
mb = ((int16_t)bb.buff[16] << 8) | bb.buff[17];
mc = ((int16_t)bb.buff[18] << 8) | bb.buff[19];
md = ((int16_t)bb.buff[20] << 8) | bb.buff[21];
if ((ac1==0 || ac1==-1) ||
(ac2==0 || ac2==-1) ||
(ac3==0 || ac3==-1) ||
(ac4==0 || ac4==0xFFFF) ||
(ac5==0 || ac5==0xFFFF) ||
(ac6==0 || ac6==0xFFFF)) {
return false;
}
_last_press_read_command_time = 0;
_last_temp_read_command_time = 0;
// Send a command to read temperature
_cmd_read_temp();
_state = 0;
_instance = _frontend.register_sensor();
sem->give();
_dev->register_periodic_callback(20000, FUNCTOR_BIND_MEMBER(&AP_Baro_BMP085::_timer, void));
return true;
}
uint16_t AP_Baro_BMP085::_read_prom_word(uint8_t word)
{
const uint8_t reg = 0xAA + (word << 1);
uint8_t val[2];
if (!_dev->transfer(®, 1, val, sizeof(val))) {
return 0;
}
return (val[0] << 8) | val[1];
}
bool AP_Baro_BMP085::_read_prom(uint16_t *prom)
{
bool all_zero = true;
for (uint8_t i = 0; i < 11; i++) {
prom[i] = _read_prom_word(i);
if (prom[i] != 0) {
all_zero = false;
}
}
if (all_zero) {
return false;
}
return true;
}
/*
This is a state machine. Acumulate a new sensor reading.
*/
void AP_Baro_BMP085::_timer(void)
{
if (!_data_ready()) {
return;
}
if (_state == 0) {
_read_temp();
} else if (_read_pressure()) {
_calculate();
}
_state++;
if (_state == 25) {
_state = 0;
_cmd_read_temp();
} else {
_cmd_read_pressure();
}
}
/*
transfer data to the frontend
*/
void AP_Baro_BMP085::update(void)
{
if (_sem->take_nonblocking()) {
if (!_has_sample) {
_sem->give();
return;
}
float temperature = 0.1f * _temp;
float pressure = _pressure_filter.getf();
_copy_to_frontend(_instance, pressure, temperature);
_sem->give();
}
}
// Send command to Read Pressure
void AP_Baro_BMP085::_cmd_read_pressure()
{
_dev->write_register(0xF4, 0x34 + (OVERSAMPLING << 6));
_last_press_read_command_time = AP_HAL::millis();
}
// Read raw pressure values
bool AP_Baro_BMP085::_read_pressure()
{
uint8_t buf[3];
if (_dev->read_registers(0xF6, buf, sizeof(buf))) {
_raw_pressure = (((uint32_t)buf[0] << 16)
| ((uint32_t)buf[1] << 8)
| ((uint32_t)buf[2])) >> (8 - OVERSAMPLING);
return true;
}
uint8_t xlsb;
if (_dev->read_registers(0xF6, buf, 2) && _dev->read_registers(0xF8, &xlsb, 1)) {
_raw_pressure = (((uint32_t)buf[0] << 16)
| ((uint32_t)buf[1] << 8)
| ((uint32_t)xlsb)) >> (8 - OVERSAMPLING);
return true;
}
_last_press_read_command_time = AP_HAL::millis() + 1000;
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
return false;
}
// Send Command to Read Temperature
void AP_Baro_BMP085::_cmd_read_temp()
{
_dev->write_register(0xF4, 0x2E);
_last_temp_read_command_time = AP_HAL::millis();
}
// Read raw temperature values
void AP_Baro_BMP085::_read_temp()
{
uint8_t buf[2];
int32_t _temp_sensor;
if (!_dev->read_registers(0xF6, buf, sizeof(buf))) {
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
return;
}
_temp_sensor = buf[0];
_temp_sensor = (_temp_sensor << 8) | buf[1];
_raw_temp = _temp_sensor;
}
// _calculate Temperature and Pressure in real units.
void AP_Baro_BMP085::_calculate()
{
int32_t x1, x2, x3, b3, b5, b6, p;
uint32_t b4, b7;
int32_t tmp;
// See Datasheet page 13 for this formulas
// Based also on Jee Labs BMP085 example code. Thanks for share.
// Temperature calculations
x1 = ((int32_t)_raw_temp - ac6) * ac5 >> 15;
x2 = ((int32_t) mc << 11) / (x1 + md);
b5 = x1 + x2;
_temp = (b5 + 8) >> 4;
// Pressure calculations
b6 = b5 - 4000;
x1 = (b2 * (b6 * b6 >> 12)) >> 11;
x2 = ac2 * b6 >> 11;
x3 = x1 + x2;
//b3 = (((int32_t) ac1 * 4 + x3)<> 2; // BAD
//b3 = ((int32_t) ac1 * 4 + x3 + 2) >> 2; //OK for OVERSAMPLING=0
tmp = ac1;
tmp = (tmp*4 + x3)<> 13;
x2 = (b1 * (b6 * b6 >> 12)) >> 16;
x3 = ((x1 + x2) + 2) >> 2;
b4 = (ac4 * (uint32_t)(x3 + 32768)) >> 15;
b7 = ((uint32_t) _raw_pressure - b3) * (50000 >> OVERSAMPLING);
p = b7 < 0x80000000 ? (b7 * 2) / b4 : (b7 / b4) * 2;
x1 = (p >> 8) * (p >> 8);
x1 = (x1 * 3038) >> 16;
x2 = (-7357 * p) >> 16;
p += ((x1 + x2 + 3791) >> 4);
if (!pressure_ok(p)) {
return;
}
if (_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
_pressure_filter.apply(p);
_has_sample = true;
_sem->give();
}
}
bool AP_Baro_BMP085::_data_ready()
{
if (BMP085_EOC >= 0) {
return _eoc->read();
}
// No EOC pin: use time from last read instead.
if (_state == 0) {
return AP_HAL::millis() > _last_temp_read_command_time + 5;
}
uint32_t conversion_time_msec;
switch (OVERSAMPLING) {
case BMP085_OVERSAMPLING_ULTRALOWPOWER:
conversion_time_msec = 5;
break;
case BMP085_OVERSAMPLING_STANDARD:
conversion_time_msec = 8;
break;
case BMP085_OVERSAMPLING_HIGHRES:
conversion_time_msec = 14;
break;
case BMP085_OVERSAMPLING_ULTRAHIGHRES:
conversion_time_msec = 26;
default:
break;
}
return AP_HAL::millis() > _last_press_read_command_time + conversion_time_msec;
}