/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
main logic for servo control
*/
#include "Plane.h"
#include
/*****************************************
* Throttle slew limit
*****************************************/
void Plane::throttle_slew_limit(SRV_Channel::Aux_servo_function_t func)
{
#if HAL_QUADPLANE_ENABLED
const bool do_throttle_slew = (control_mode->does_auto_throttle() || quadplane.in_assisted_flight() || quadplane.in_vtol_mode());
#else
const bool do_throttle_slew = control_mode->does_auto_throttle();
#endif
if (!do_throttle_slew) {
// only do throttle slew limiting in modes where throttle control is automatic
SRV_Channels::set_slew_rate(func, 0.0, 100, G_Dt);
return;
}
uint8_t slewrate = aparm.throttle_slewrate;
if (control_mode == &mode_auto) {
if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) {
slewrate = g.takeoff_throttle_slewrate;
} else if (landing.get_throttle_slewrate() != 0 && flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
slewrate = landing.get_throttle_slewrate();
}
}
if (g.takeoff_throttle_slewrate != 0 &&
(flight_stage == AP_Vehicle::FixedWing::FLIGHT_TAKEOFF ||
flight_stage == AP_Vehicle::FixedWing::FLIGHT_VTOL)) {
// for VTOL we use takeoff slewrate, which helps with transition
slewrate = g.takeoff_throttle_slewrate;
}
#if HAL_QUADPLANE_ENABLED
if (g.takeoff_throttle_slewrate != 0 && quadplane.in_transition()) {
slewrate = g.takeoff_throttle_slewrate;
}
#endif
SRV_Channels::set_slew_rate(func, slewrate, 100, G_Dt);
}
/* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
Disable throttle if following conditions are met:
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher
* AND
* 2 - Our reported altitude is within 10 meters of the home altitude.
* 3 - Our reported speed is under 5 meters per second.
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached
* OR
* 5 - Home location is not set
* OR
* 6- Landing does not want to allow throttle
*/
bool Plane::suppress_throttle(void)
{
#if PARACHUTE == ENABLED
if (control_mode->does_auto_throttle() && parachute.release_initiated()) {
// throttle always suppressed in auto-throttle modes after parachute release initiated
throttle_suppressed = true;
return true;
}
#endif
if (landing.is_throttle_suppressed()) {
return true;
}
if (!throttle_suppressed) {
// we've previously met a condition for unsupressing the throttle
return false;
}
if (!control_mode->does_auto_throttle()) {
// the user controls the throttle
throttle_suppressed = false;
return false;
}
bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5);
if ((control_mode == &mode_auto &&
auto_state.takeoff_complete == false) ||
control_mode == &mode_takeoff) {
uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000;
if (is_flying() &&
millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode
adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home
labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch
gps_movement) { // definite gps movement
// we're already flying, do not suppress the throttle. We can get
// stuck in this condition if we reset a mission and cmd 1 is takeoff
// but we're currently flying around below the takeoff altitude
throttle_suppressed = false;
return false;
}
if (auto_takeoff_check()) {
// we're in auto takeoff
throttle_suppressed = false;
auto_state.baro_takeoff_alt = barometer.get_altitude();
return false;
}
// keep throttle suppressed
return true;
}
if (fabsf(relative_altitude) >= 10.0f) {
// we're more than 10m from the home altitude
throttle_suppressed = false;
return false;
}
if (gps_movement) {
// if we have an airspeed sensor, then check it too, and
// require 5m/s. This prevents throttle up due to spiky GPS
// groundspeed with bad GPS reception
#if AP_AIRSPEED_ENABLED
if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) {
// we're moving at more than 5 m/s
throttle_suppressed = false;
return false;
}
#else
// no airspeed sensor, so we trust that the GPS's movement is truthful
throttle_suppressed = false;
return false;
#endif
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.is_flying()) {
throttle_suppressed = false;
return false;
}
#endif
// throttle remains suppressed
return true;
}
/*
mixer for elevon and vtail channels setup using designated servo
function values. This mixer operates purely on scaled values,
allowing the user to trim and limit individual servos using the
SERVOn_* parameters
*/
void Plane::channel_function_mixer(SRV_Channel::Aux_servo_function_t func1_in, SRV_Channel::Aux_servo_function_t func2_in,
SRV_Channel::Aux_servo_function_t func1_out, SRV_Channel::Aux_servo_function_t func2_out) const
{
// the order is setup so that non-reversed servos go "up", and
// func1 is the "left" channel. Users can adjust with channel
// reversal as needed
float in1 = SRV_Channels::get_output_scaled(func1_in);
float in2 = SRV_Channels::get_output_scaled(func2_in);
// apply MIXING_OFFSET to input channels
if (g.mixing_offset < 0) {
in2 *= (100 - g.mixing_offset) * 0.01;
} else if (g.mixing_offset > 0) {
in1 *= (100 + g.mixing_offset) * 0.01;
}
float out1 = constrain_float((in2 - in1) * g.mixing_gain, -4500, 4500);
float out2 = constrain_float((in2 + in1) * g.mixing_gain, -4500, 4500);
SRV_Channels::set_output_scaled(func1_out, out1);
SRV_Channels::set_output_scaled(func2_out, out2);
}
/*
setup flaperon output channels
*/
void Plane::flaperon_update()
{
/*
flaperons are implemented as a mixer between aileron and a
percentage of flaps. Flap input can come from a manual channel
or from auto flaps.
*/
float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
float flap_percent = SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto);
float flaperon_left = constrain_float(aileron + flap_percent * 45, -4500, 4500);
float flaperon_right = constrain_float(aileron - flap_percent * 45, -4500, 4500);
SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_left, flaperon_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_right, flaperon_right);
}
/*
setup differential spoiler output channels
Differential spoilers are a type of elevon that is split on each
wing to give yaw control, mixed from rudder
*/
void Plane::dspoiler_update(void)
{
const int8_t bitmask = g2.crow_flap_options.get();
const bool flying_wing = (bitmask & CrowFlapOptions::FLYINGWING) != 0;
const bool full_span_aileron = (bitmask & CrowFlapOptions::FULLSPAN) != 0;
//progressive crow when option is set or RC switch is set to progressive
const bool progressive_crow = (bitmask & CrowFlapOptions::PROGRESSIVE_CROW) != 0 || crow_mode == CrowMode::PROGRESSIVE;
// if flying wing use elevons else use ailerons
float elevon_left;
float elevon_right;
if (flying_wing) {
elevon_left = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left);
elevon_right = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right);
} else {
const float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
elevon_left = -aileron;
elevon_right = aileron;
}
const float rudder_rate = g.dspoiler_rud_rate * 0.01f;
const float rudder = SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) * rudder_rate;
float dspoiler_outer_left = elevon_left;
float dspoiler_outer_right = elevon_right;
float dspoiler_inner_left = 0;
float dspoiler_inner_right = 0;
// full span ailerons / elevons
if (full_span_aileron) {
dspoiler_inner_left = elevon_left;
dspoiler_inner_right = elevon_right;
}
if (rudder > 0) {
// apply rudder to right wing
dspoiler_outer_right = constrain_float(dspoiler_outer_right + rudder, -4500, 4500);
dspoiler_inner_right = constrain_float(dspoiler_inner_right - rudder, -4500, 4500);
} else {
// apply rudder to left wing
dspoiler_outer_left = constrain_float(dspoiler_outer_left - rudder, -4500, 4500);
dspoiler_inner_left = constrain_float(dspoiler_inner_left + rudder, -4500, 4500);
}
// limit flap throw used for aileron
const int8_t aileron_matching = g2.crow_flap_aileron_matching.get();
if (aileron_matching < 100) {
// only do matching if it will make a difference
const float aileron_matching_scaled = aileron_matching * 0.01;
if (is_negative(dspoiler_inner_left)) {
dspoiler_inner_left *= aileron_matching_scaled;
}
if (is_negative(dspoiler_inner_right)) {
dspoiler_inner_right *= aileron_matching_scaled;
}
}
int16_t weight_outer = g2.crow_flap_weight_outer.get();
if (crow_mode == Plane::CrowMode::CROW_DISABLED) { //override totally aileron crow if crow RC switch set to disabled
weight_outer = 0;
}
const int16_t weight_inner = g2.crow_flap_weight_inner.get();
if (weight_outer > 0 || weight_inner > 0) {
/*
apply crow flaps by apply the same split of the differential
spoilers to both wings. Get flap percentage from k_flap_auto, which is set
in set_servos_flaps() as the maximum of manual and auto flap control
*/
const float flap_percent = SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto);
if (is_positive(flap_percent)) {
float inner_flap_scaled = flap_percent;
float outer_flap_scaled = flap_percent;
if (progressive_crow) {
// apply 0 - full inner from 0 to 50% flap then add in outer above 50%
inner_flap_scaled = constrain_float(inner_flap_scaled * 2, 0,100);
outer_flap_scaled = constrain_float(outer_flap_scaled - 50, 0,50) * 2;
}
// scale flaps so when weights are 100 they give full up or down
dspoiler_outer_left = constrain_float(dspoiler_outer_left + outer_flap_scaled * weight_outer * 0.45, -4500, 4500);
dspoiler_inner_left = constrain_float(dspoiler_inner_left - inner_flap_scaled * weight_inner * 0.45, -4500, 4500);
dspoiler_outer_right = constrain_float(dspoiler_outer_right + outer_flap_scaled * weight_outer * 0.45, -4500, 4500);
dspoiler_inner_right = constrain_float(dspoiler_inner_right - inner_flap_scaled * weight_inner * 0.45, -4500, 4500);
}
}
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft1, dspoiler_outer_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft2, dspoiler_inner_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight1, dspoiler_outer_right);
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight2, dspoiler_inner_right);
}
/*
set airbrakes based on reverse thrust and/or manual input RC channel
*/
void Plane::airbrake_update(void)
{
// Calculate any manual airbrake input from RC channel option.
float manual_airbrake_percent = 0;
if (channel_airbrake != nullptr && !failsafe.rc_failsafe && failsafe.throttle_counter == 0) {
manual_airbrake_percent = channel_airbrake->percent_input();
}
// Calculate auto airbrake from negative throttle.
float throttle_min = aparm.throttle_min.get();
float airbrake_pc = 0;
float throttle_pc = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
if (throttle_min < 0) {
if (landing.is_flaring()) {
// Full airbrakes during the flare.
airbrake_pc = 100;
}
else {
// Determine fraction between zero and full negative throttle.
airbrake_pc = constrain_float(-throttle_pc, 0, 100);
}
}
// Manual overrides auto airbrake setting.
if (airbrake_pc < manual_airbrake_percent) {
airbrake_pc = manual_airbrake_percent;
}
// Output to airbrake servo types.
SRV_Channels::set_output_scaled(SRV_Channel::k_airbrake, airbrake_pc);
}
/*
setup servos for idle mode
Idle mode is used during balloon launch to keep servos still, apart
from occasional wiggle to prevent freezing up
*/
void Plane::set_servos_idle(void)
{
int16_t servo_value;
// move over full range for 2 seconds
if (auto_state.idle_wiggle_stage != 0) {
auto_state.idle_wiggle_stage += 2;
}
if (auto_state.idle_wiggle_stage == 0) {
servo_value = 0;
} else if (auto_state.idle_wiggle_stage < 50) {
servo_value = auto_state.idle_wiggle_stage * (4500 / 50);
} else if (auto_state.idle_wiggle_stage < 100) {
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
} else if (auto_state.idle_wiggle_stage < 150) {
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
} else if (auto_state.idle_wiggle_stage < 200) {
servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50);
} else {
auto_state.idle_wiggle_stage = 0;
servo_value = 0;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, servo_value);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, servo_value);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, servo_value);
SRV_Channels::set_output_to_trim(SRV_Channel::k_throttle);
SRV_Channels::output_ch_all();
}
/*
pass through channels in manual mode
*/
void Plane::set_servos_manual_passthrough(void)
{
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, roll_in_expo(false));
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitch_in_expo(false));
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, rudder_in_expo(false));
float throttle = get_throttle_input(true);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle);
#if HAL_QUADPLANE_ENABLED
if (quadplane.available() && (quadplane.options & QuadPlane::OPTION_IDLE_GOV_MANUAL)) {
// for quadplanes it can be useful to run the idle governor in MANUAL mode
// as it prevents the VTOL motors from running
int8_t min_throttle = aparm.throttle_min.get();
// apply idle governor
g2.ice_control.update_idle_governor(min_throttle);
throttle = MAX(throttle, min_throttle);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle);
}
#endif
}
/*
Scale the throttle to conpensate for battery voltage drop
*/
void Plane::throttle_voltage_comp(int8_t &min_throttle, int8_t &max_throttle) const
{
// return if not enabled, or setup incorrectly
if (!is_positive(g2.fwd_thr_batt_voltage_min) || g2.fwd_thr_batt_voltage_min >= g2.fwd_thr_batt_voltage_max) {
return;
}
float batt_voltage_resting_estimate = AP::battery().voltage_resting_estimate(g2.fwd_thr_batt_idx);
// Return for a very low battery
if (batt_voltage_resting_estimate < 0.25f * g2.fwd_thr_batt_voltage_min) {
return;
}
// constrain read voltage to min and max params
batt_voltage_resting_estimate = constrain_float(batt_voltage_resting_estimate,g2.fwd_thr_batt_voltage_min,g2.fwd_thr_batt_voltage_max);
// don't apply compensation if the voltage is excessively low
if (batt_voltage_resting_estimate < 1) {
return;
}
// Scale the throttle up to compensate for voltage drop
// Ratio = 1 when voltage = voltage max, ratio increases as voltage drops
const float ratio = g2.fwd_thr_batt_voltage_max / batt_voltage_resting_estimate;
// Scale the throttle limits to prevent subsequent clipping
min_throttle = int8_t(MAX((ratio * (float)min_throttle), -100));
max_throttle = int8_t(MIN((ratio * (float)max_throttle), 100));
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
constrain_float(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * ratio, -100, 100));
}
/*
calculate any throttle limits based on the watt limiter
*/
void Plane::throttle_watt_limiter(int8_t &min_throttle, int8_t &max_throttle)
{
uint32_t now = millis();
if (battery.overpower_detected()) {
// overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value
// throttle limit will attack by 10% per second
if (is_positive(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)) && // demanding too much positive thrust
throttle_watt_limit_max < max_throttle - 25 &&
now - throttle_watt_limit_timer_ms >= 1) {
// always allow for 25% throttle available regardless of battery status
throttle_watt_limit_timer_ms = now;
throttle_watt_limit_max++;
} else if (is_negative(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)) &&
min_throttle < 0 && // reverse thrust is available
throttle_watt_limit_min < -(min_throttle) - 25 &&
now - throttle_watt_limit_timer_ms >= 1) {
// always allow for 25% throttle available regardless of battery status
throttle_watt_limit_timer_ms = now;
throttle_watt_limit_min++;
}
} else if (now - throttle_watt_limit_timer_ms >= 1000) {
// it has been 1 second since last over-current, check if we can resume higher throttle.
// this throttle release is needed to allow raising the max_throttle as the battery voltage drains down
// throttle limit will release by 1% per second
if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > throttle_watt_limit_max && // demanding max forward thrust
throttle_watt_limit_max > 0) { // and we're currently limiting it
throttle_watt_limit_timer_ms = now;
throttle_watt_limit_max--;
} else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < throttle_watt_limit_min && // demanding max negative thrust
throttle_watt_limit_min > 0) { // and we're limiting it
throttle_watt_limit_timer_ms = now;
throttle_watt_limit_min--;
}
}
max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max);
if (min_throttle < 0) {
min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0);
}
}
/*
setup output channels all non-manual modes
*/
void Plane::set_servos_controlled(void)
{
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
// allow landing to override servos if it would like to
landing.override_servos();
}
// convert 0 to 100% (or -100 to +100) into PWM
int8_t min_throttle = aparm.throttle_min.get();
int8_t max_throttle = aparm.throttle_max.get();
// apply idle governor
g2.ice_control.update_idle_governor(min_throttle);
if (min_throttle < 0 && !allow_reverse_thrust()) {
// reverse thrust is available but inhibited.
min_throttle = 0;
}
bool flight_stage_determines_max_throttle = false;
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_TAKEOFF ||
flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND
) {
flight_stage_determines_max_throttle = true;
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_transition()) {
flight_stage_determines_max_throttle = true;
}
#endif
if (flight_stage_determines_max_throttle) {
if (aparm.takeoff_throttle_max != 0) {
max_throttle = aparm.takeoff_throttle_max;
} else {
max_throttle = aparm.throttle_max;
}
} else if (landing.is_flaring()) {
min_throttle = 0;
}
// conpensate for battery voltage drop
throttle_voltage_comp(min_throttle, max_throttle);
// apply watt limiter
throttle_watt_limiter(min_throttle, max_throttle);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
constrain_float(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), min_throttle, max_throttle));
if (!hal.util->get_soft_armed()) {
if (arming.arming_required() == AP_Arming::Required::YES_ZERO_PWM) {
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::Limit::ZERO_PWM);
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::Limit::ZERO_PWM);
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::Limit::ZERO_PWM);
} else {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0.0);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0.0);
}
} else if (suppress_throttle()) {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0); // default
// throttle is suppressed (above) to zero in final flare in auto mode, but we allow instead thr_min if user prefers, eg turbines:
if (landing.is_flaring() && landing.use_thr_min_during_flare() ) {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, aparm.throttle_min.get());
}
if (g.throttle_suppress_manual) {
// manual pass through of throttle while throttle is suppressed
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
}
#if AP_SCRIPTING_ENABLED
} else if (plane.nav_scripting.current_ms > 0 && nav_scripting.enabled) {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.nav_scripting.throttle_pct);
#endif
} else if (control_mode == &mode_stabilize ||
control_mode == &mode_training ||
control_mode == &mode_acro ||
control_mode == &mode_fbwa ||
control_mode == &mode_autotune) {
// a manual throttle mode
if (!rc().has_valid_input()) {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0);
} else if (g.throttle_passthru_stabilize) {
// manual pass through of throttle while in FBWA or
// STABILIZE mode with THR_PASS_STAB set
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
} else {
// get throttle, but adjust center to output TRIM_THROTTLE if flight option set
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
constrain_int16(get_adjusted_throttle_input(true), min_throttle, max_throttle));
}
} else if (control_mode->is_guided_mode() &&
guided_throttle_passthru) {
// manual pass through of throttle while in GUIDED
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
#if HAL_QUADPLANE_ENABLED
} else if (quadplane.in_vtol_mode()) {
float fwd_thr = 0;
// if armed and not spooled down ask quadplane code for forward throttle
if (quadplane.motors->armed() &&
quadplane.motors->get_desired_spool_state() != AP_Motors::DesiredSpoolState::SHUT_DOWN) {
fwd_thr = constrain_float(quadplane.forward_throttle_pct(), min_throttle, max_throttle);
}
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, fwd_thr);
#endif // HAL_QUADPLANE_ENABLED
}
// let EKF know to start GSF yaw estimator before takeoff movement starts so that yaw angle is better estimated
const float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
if (!is_flying() && arming.is_armed()) {
// Check if rate of change of velocity along X axis exceeds 1-g which normally indicates a throw.
// Tests with hand carriage of micro UAS indicates that a 1-g threshold does not false trigger prior
// to the throw, but there is margin to increase this threshold if false triggering becomes problematic.
const float accel_x_due_to_gravity = GRAVITY_MSS * ahrs.sin_pitch();
const float accel_x_due_to_throw = ahrs.get_accel().x - accel_x_due_to_gravity;
bool throw_detected = accel_x_due_to_throw > GRAVITY_MSS;
bool throttle_up_detected = throttle > aparm.throttle_cruise;
if (throw_detected || throttle_up_detected) {
plane.ahrs.set_takeoff_expected(true);
}
}
}
/*
setup flap outputs
*/
void Plane::set_servos_flaps(void)
{
// Auto flap deployment
int8_t auto_flap_percent = 0;
int8_t manual_flap_percent = 0;
// work out any manual flap input
if (channel_flap != nullptr && rc().has_valid_input()) {
manual_flap_percent = channel_flap->percent_input();
}
if (control_mode->does_auto_throttle()) {
int16_t flapSpeedSource = 0;
if (ahrs.airspeed_sensor_enabled()) {
flapSpeedSource = target_airspeed_cm * 0.01f;
} else {
flapSpeedSource = aparm.throttle_cruise;
}
if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) {
auto_flap_percent = g.flap_2_percent;
} else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) {
auto_flap_percent = g.flap_1_percent;
} //else flaps stay at default zero deflection
#if HAL_SOARING_ENABLED
if (control_mode == &mode_thermal) {
auto_flap_percent = g2.soaring_controller.get_thermalling_flap();
}
#endif
/*
special flap levels for takeoff and landing. This works
better than speed based flaps as it leads to less
possibility of oscillation
*/
switch (flight_stage) {
case AP_Vehicle::FixedWing::FLIGHT_TAKEOFF:
case AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND:
if (g.takeoff_flap_percent != 0) {
auto_flap_percent = g.takeoff_flap_percent;
}
break;
case AP_Vehicle::FixedWing::FLIGHT_NORMAL:
if (g.takeoff_flap_percent != 0 && in_preLaunch_flight_stage()) {
// TODO: move this to a new FLIGHT_PRE_TAKEOFF stage
auto_flap_percent = g.takeoff_flap_percent;
}
break;
case AP_Vehicle::FixedWing::FLIGHT_LAND:
if (landing.get_flap_percent() != 0) {
auto_flap_percent = landing.get_flap_percent();
}
break;
default:
break;
}
}
// manual flap input overrides auto flap input
if (abs(manual_flap_percent) > auto_flap_percent) {
auto_flap_percent = manual_flap_percent;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_flap_auto, auto_flap_percent);
SRV_Channels::set_output_scaled(SRV_Channel::k_flap, manual_flap_percent);
SRV_Channels::set_slew_rate(SRV_Channel::k_flap_auto, g.flap_slewrate, 100, G_Dt);
SRV_Channels::set_slew_rate(SRV_Channel::k_flap, g.flap_slewrate, 100, G_Dt);
// output to flaperons, if any
flaperon_update();
}
#if LANDING_GEAR_ENABLED == ENABLED
/*
setup landing gear state
*/
void Plane::set_landing_gear(void)
{
if (control_mode == &mode_auto && hal.util->get_soft_armed() && is_flying() && gear.last_flight_stage != flight_stage) {
switch (flight_stage) {
case AP_Vehicle::FixedWing::FLIGHT_LAND:
g2.landing_gear.deploy_for_landing();
break;
case AP_Vehicle::FixedWing::FLIGHT_NORMAL:
g2.landing_gear.retract_after_takeoff();
break;
default:
break;
}
}
gear.last_flight_stage = flight_stage;
}
#endif // LANDING_GEAR_ENABLED
/*
support for twin-engine planes
*/
void Plane::servos_twin_engine_mix(void)
{
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
float rud_gain = float(plane.g2.rudd_dt_gain) * 0.01f;
rudder_dt = rud_gain * SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / SERVO_MAX;
#if ADVANCED_FAILSAFE == ENABLED
if (afs.should_crash_vehicle()) {
// when in AFS failsafe force rudder input for differential thrust to zero
rudder_dt = 0;
}
#endif
float throttle_left, throttle_right;
if (throttle < 0 && have_reverse_thrust() && allow_reverse_thrust()) {
// doing reverse thrust
throttle_left = constrain_float(throttle + 50 * rudder_dt, -100, 0);
throttle_right = constrain_float(throttle - 50 * rudder_dt, -100, 0);
} else if (throttle <= 0) {
throttle_left = throttle_right = 0;
} else {
// doing forward thrust
throttle_left = constrain_float(throttle + 50 * rudder_dt, 0, 100);
throttle_right = constrain_float(throttle - 50 * rudder_dt, 0, 100);
}
if (!hal.util->get_soft_armed()) {
if (arming.arming_required() == AP_Arming::Required::YES_ZERO_PWM) {
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::Limit::ZERO_PWM);
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::Limit::ZERO_PWM);
} else {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0);
}
} else {
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_left);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_right);
throttle_slew_limit(SRV_Channel::k_throttleLeft);
throttle_slew_limit(SRV_Channel::k_throttleRight);
}
}
/*
Set throttle,attitude(in Attitude.cpp), and tilt servos for forced flare by RCx_OPTION switch for landing in FW mode
For Fixed Wind modes with manual throttle control only. Forces tilts up and throttle to THR_MIN.
Throttle stick must be in idle deadzone. This allows non-momentary switch to be used and quick bailouts
for go-arounds. Also helps prevent propstrike after landing with switch release on ground.
*/
void Plane::force_flare(void)
{
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_transition() && plane.arming.is_armed()) { //allows for ground checking of flare tilts
return;
}
if (control_mode->is_vtol_mode()) {
return;
}
/* to be active must be:
-manual throttle mode
-in an enabled flare mode (RC switch active)
-at zero thrust: in throttle trim dz except for sprung throttle option where trim is at hover stick
*/
if (!control_mode->does_auto_throttle() && flare_mode != FlareMode::FLARE_DISABLED && throttle_at_zero()) {
int32_t tilt = -SERVO_MAX; //this is tilts up for a normal tiltrotor if at zero thrust throttle stick
if (quadplane.tiltrotor.enabled() && (quadplane.tiltrotor.type == Tiltrotor::TILT_TYPE_BICOPTER)) {
tilt = 0; // this is tilts up for a Bicopter
}
if (quadplane.tailsitter.enabled()) {
tilt = SERVO_MAX; //this is tilts up for a tailsitter
}
SRV_Channels::set_output_scaled(SRV_Channel::k_motor_tilt, tilt);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRear, tilt);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRearLeft, tilt);
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRearRight, tilt);
float throttle_min = MAX(aparm.throttle_min.get(),0); //allows ICE to run if used but accounts for reverse thrust setups
if (arming.is_armed()) { //prevent running motors if unarmed
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle_min);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_min);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_min);
}
}
#endif
}
/* Set the flight control servos based on the current calculated values
This function operates by first building up output values for
channels using set_servo() and set_radio_out(). Using
set_radio_out() is for when a raw PWM value of output is given which
does not depend on any output scaling. Using set_servo() is for when
scaling and mixing will be needed.
Finally servos_output() is called to push the final PWM values
for output channels
*/
void Plane::set_servos(void)
{
// start with output corked. the cork is released when we run
// servos_output(), which is run from all code paths in this
// function
SRV_Channels::cork();
// this is to allow the failsafe module to deliberately crash
// the plane. Only used in extreme circumstances to meet the
// OBC rules
#if ADVANCED_FAILSAFE == ENABLED
if (afs.should_crash_vehicle()) {
afs.terminate_vehicle();
if (!afs.terminating_vehicle_via_landing()) {
return;
}
}
#endif
// do any transition updates for quadplane
#if HAL_QUADPLANE_ENABLED
quadplane.update();
#endif
if (control_mode == &mode_auto && auto_state.idle_mode) {
// special handling for balloon launch
set_servos_idle();
servos_output();
return;
}
/*
see if we are doing ground steering.
*/
if (!steering_control.ground_steering) {
// we are not at an altitude for ground steering. Set the nose
// wheel to the rudder just in case the barometer has drifted
// a lot
steering_control.steering = steering_control.rudder;
} else if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) {
// we are within the ground steering altitude but don't have a
// dedicated steering channel. Set the rudder to the ground
// steering output
steering_control.rudder = steering_control.steering;
}
// clear ground_steering to ensure manual control if the yaw stabilizer doesn't run
steering_control.ground_steering = false;
if (control_mode == &mode_training) {
steering_control.rudder = rudder_in_expo(false);
}
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, steering_control.rudder);
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering_control.steering);
if (control_mode == &mode_manual) {
set_servos_manual_passthrough();
} else {
set_servos_controlled();
}
// setup flap outputs
set_servos_flaps();
#if LANDING_GEAR_ENABLED == ENABLED
// setup landing gear output
set_landing_gear();
#endif
// set airbrake outputs
airbrake_update();
// slew rate limit throttle
throttle_slew_limit(SRV_Channel::k_throttle);
if (!arming.is_armed()) {
//Some ESCs get noisy (beep error msgs) if PWM == 0.
//This little segment aims to avoid this.
switch (arming.arming_required()) {
case AP_Arming::Required::NO:
//keep existing behavior: do nothing to radio_out
//(don't disarm throttle channel even if AP_Arming class is)
break;
case AP_Arming::Required::YES_ZERO_PWM:
SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, 0);
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, 0);
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, 0);
break;
case AP_Arming::Required::YES_MIN_PWM:
default:
int8_t min_throttle = MAX(aparm.throttle_min.get(),0);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, min_throttle);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, min_throttle);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, min_throttle);
break;
}
}
float override_pct = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
if (g2.ice_control.throttle_override(override_pct)) {
// the ICE controller wants to override the throttle for starting, idle, or redline
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, override_pct);
#if HAL_QUADPLANE_ENABLED
quadplane.vel_forward.integrator = 0;
#endif
}
// run output mixer and send values to the hal for output
servos_output();
}
/*
This sets servos to neutral if it is a control surface servo in auto mode
*/
void Plane::landing_neutral_control_surface_servos(void)
{
if (!(landing.get_then_servos_neutral() > 0 &&
control_mode == &mode_auto &&
landing.get_disarm_delay() > 0 &&
landing.is_complete() &&
!arming.is_armed())) {
return;
}
// after an auto land and auto disarm, set the servos to be neutral just
// in case we're upside down or some crazy angle and straining the servos.
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS ; i++) {
SRV_Channel *chan = SRV_Channels::srv_channel(i);
if (chan == nullptr || !SRV_Channel::is_control_surface(chan->get_function())) {
continue;
}
if (landing.get_then_servos_neutral() == 1) {
SRV_Channels::set_output_scaled(chan->get_function(), 0);
} else if (landing.get_then_servos_neutral() == 2) {
SRV_Channels::set_output_limit(chan->get_function(), SRV_Channel::Limit::ZERO_PWM);
}
}
}
/*
run configured output mixer. This takes calculated servo_out values
for each channel and calculates PWM values, then pushes them to
hal.rcout
*/
void Plane::servos_output(void)
{
SRV_Channels::cork();
// support twin-engine aircraft
servos_twin_engine_mix();
// run vtail and elevon mixers
channel_function_mixer(SRV_Channel::k_aileron, SRV_Channel::k_elevator, SRV_Channel::k_elevon_left, SRV_Channel::k_elevon_right);
channel_function_mixer(SRV_Channel::k_rudder, SRV_Channel::k_elevator, SRV_Channel::k_vtail_right, SRV_Channel::k_vtail_left);
#if HAL_QUADPLANE_ENABLED
// cope with tailsitters and bicopters
quadplane.tailsitter.output();
quadplane.tiltrotor.bicopter_output();
#endif
// support forced flare option
force_flare();
// implement differential spoilers
dspoiler_update();
// set control surface servos to neutral
landing_neutral_control_surface_servos();
// support MANUAL_RCMASK
if (g2.manual_rc_mask.get() != 0 && control_mode == &mode_manual) {
SRV_Channels::copy_radio_in_out_mask(uint32_t(g2.manual_rc_mask.get()));
}
SRV_Channels::calc_pwm();
SRV_Channels::output_ch_all();
SRV_Channels::push();
if (g2.servo_channels.auto_trim_enabled()) {
servos_auto_trim();
}
}
void Plane::update_throttle_hover() {
// update hover throttle at 100Hz
#if HAL_QUADPLANE_ENABLED
quadplane.update_throttle_hover();
#endif
}
/*
implement automatic persistent trim of control surfaces with
AUTO_TRIM=2, only available when SERVO_RNG_ENABLE=1 as otherwise it
would impact R/C transmitter calibration
*/
void Plane::servos_auto_trim(void)
{
// only in auto modes and FBWA
if (!control_mode->does_auto_throttle() && control_mode != &mode_fbwa) {
return;
}
if (!hal.util->get_soft_armed()) {
return;
}
if (!is_flying()) {
return;
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_assisted_flight() || quadplane.in_vtol_mode()) {
// can't auto-trim with quadplane motors running
return;
}
#endif
if (abs(nav_roll_cd) > 700 || abs(nav_pitch_cd) > 700) {
// only when close to level
return;
}
uint32_t now = AP_HAL::millis();
if (now - auto_trim.last_trim_check < 500) {
// check twice a second. We want slow trim update
return;
}
if (ahrs.groundspeed() < 8 || smoothed_airspeed < 8) {
// only when definitely moving
return;
}
// adjust trim on channels by a small amount according to I value
float roll_I = rollController.get_pid_info().I;
float pitch_I = pitchController.get_pid_info().I;
g2.servo_channels.adjust_trim(SRV_Channel::k_aileron, roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_elevator, pitch_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_left, pitch_I - roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_right, pitch_I + roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_left, pitch_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_right, pitch_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_left, roll_I);
g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_right, roll_I);
// cope with various dspoiler options
const int8_t bitmask = g2.crow_flap_options.get();
const bool flying_wing = (bitmask & CrowFlapOptions::FLYINGWING) != 0;
const bool full_span_aileron = (bitmask & CrowFlapOptions::FULLSPAN) != 0;
float dspoiler_outer_left = - roll_I;
float dspoiler_inner_left = 0.0f;
float dspoiler_outer_right = roll_I;
float dspoiler_inner_right = 0.0f;
if (flying_wing) {
dspoiler_outer_left += pitch_I;
dspoiler_outer_right += pitch_I;
}
if (full_span_aileron) {
dspoiler_inner_left = dspoiler_outer_left;
dspoiler_inner_right = dspoiler_outer_right;
}
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft1, dspoiler_outer_left);
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft2, dspoiler_inner_left);
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight1, dspoiler_outer_right);
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight2, dspoiler_inner_right);
auto_trim.last_trim_check = now;
if (now - auto_trim.last_trim_save > 10000) {
auto_trim.last_trim_save = now;
g2.servo_channels.save_trim();
}
}