#include "Copter.h" #if MODE_ZIGZAG_ENABLED == ENABLED /* * Init and run calls for zigzag flight mode */ #define ZIGZAG_WP_RADIUS_CM 300 // initialise zigzag controller bool ModeZigZag::init(bool ignore_checks) { // initialize's loiter position and velocity on xy-axes from current pos and velocity loiter_nav->clear_pilot_desired_acceleration(); loiter_nav->init_target(); // initialise position_z and desired velocity_z if (!pos_control->is_active_z()) { pos_control->set_alt_target_to_current_alt(); pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z()); } // initialise waypoint state stage = STORING_POINTS; dest_A.zero(); dest_B.zero(); return true; } // run the zigzag controller // should be called at 100hz or more void ModeZigZag::run() { // initialize vertical speed and acceleration's range pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up); pos_control->set_max_accel_z(g.pilot_accel_z); // if not auto armed or motors not enabled set throttle to zero and exit immediately if (is_disarmed_or_landed() || !motors->get_interlock() ) { zero_throttle_and_relax_ac(copter.is_tradheli() && motors->get_interlock()); return; } // auto control if (stage == AUTO) { // if vehicle has reached destination switch to manual control if (reached_destination()) { AP_Notify::events.waypoint_complete = 1; return_to_manual_control(true); } else { auto_control(); } } // manual control if (stage == STORING_POINTS || stage == MANUAL_REGAIN) { // receive pilot's inputs, do position and attitude control manual_control(); } } // save current position as A (dest_num = 0) or B (dest_num = 1). If both A and B have been saved move to the one specified void ModeZigZag::save_or_move_to_destination(uint8_t dest_num) { // sanity check if (dest_num > 1) { return; } // get current position as an offset from EKF origin const Vector3f curr_pos = inertial_nav.get_position(); // handle state machine changes switch (stage) { case STORING_POINTS: if (dest_num == 0) { // store point A dest_A.x = curr_pos.x; dest_A.y = curr_pos.y; gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: point A stored"); copter.Log_Write_Event(DATA_ZIGZAG_STORE_A); } else { // store point B dest_B.x = curr_pos.x; dest_B.y = curr_pos.y; gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: point B stored"); copter.Log_Write_Event(DATA_ZIGZAG_STORE_B); } // if both A and B have been stored advance state if (!dest_A.is_zero() && !dest_B.is_zero() && is_positive((dest_B - dest_A).length_squared())) { stage = MANUAL_REGAIN; } break; case AUTO: case MANUAL_REGAIN: // A and B have been defined, move vehicle to destination A or B Vector3f next_dest; bool terr_alt; if (calculate_next_dest(dest_num, stage == AUTO, next_dest, terr_alt)) { wp_nav->wp_and_spline_init(); if (wp_nav->set_wp_destination(next_dest, terr_alt)) { stage = AUTO; reach_wp_time_ms = 0; if (dest_num == 0) { gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: moving to A"); } else { gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: moving to B"); } } } break; } } // return manual control to the pilot void ModeZigZag::return_to_manual_control(bool maintain_target) { if (stage == AUTO) { stage = MANUAL_REGAIN; loiter_nav->clear_pilot_desired_acceleration(); if (maintain_target) { const Vector3f& wp_dest = wp_nav->get_wp_destination(); loiter_nav->init_target(wp_dest); if (wp_nav->origin_and_destination_are_terrain_alt()) { copter.surface_tracking.set_target_alt_cm(wp_dest.z); } } else { loiter_nav->init_target(); } gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: manual control"); } } // fly the vehicle to closest point on line perpendicular to dest_A or dest_B void ModeZigZag::auto_control() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller const bool wpnav_ok = wp_nav->update_wpnav(); // call z-axis position controller (wp_nav should have already updated its alt target) pos_control->update_z_controller(); // call attitude controller // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate); // if wpnav failed (because of lack of terrain data) switch back to pilot control for next iteration if (!wpnav_ok) { return_to_manual_control(false); } } // manual_control - process manual control void ModeZigZag::manual_control() { float target_yaw_rate = 0.0f; float target_climb_rate = 0.0f; // process pilot inputs unless we are in radio failsafe if (!copter.failsafe.radio) { float target_roll, target_pitch; // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // convert pilot input to lean angles get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max()); // process pilot's roll and pitch input loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt); // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); // get pilot desired climb rate target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in()); // make sure the climb rate is in the given range, prevent floating point errors target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up); } else { // clear out pilot desired acceleration in case radio failsafe event occurs and we // do not switch to RTL for some reason loiter_nav->clear_pilot_desired_acceleration(); } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run loiter controller loiter_nav->update(); // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate); // adjust climb rate using rangefinder target_climb_rate = copter.surface_tracking.adjust_climb_rate(target_climb_rate); // get avoidance adjusted climb rate target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate); // update altitude target and call position controller pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false); // adjusts target up or down using a climb rate pos_control->update_z_controller(); } // return true if vehicle is within a small area around the destination bool ModeZigZag::reached_destination() { // check if wp_nav believes it has reached the destination if (!wp_nav->reached_wp_destination()) { return false; } // check distance to destination if (wp_nav->get_wp_distance_to_destination() > ZIGZAG_WP_RADIUS_CM) { return false; } // wait at least one second uint32_t now = AP_HAL::millis(); if (reach_wp_time_ms == 0) { reach_wp_time_ms = now; } return ((now - reach_wp_time_ms) > 1000); } // calculate next destination according to vector A-B and current position // use_wpnav_alt should be true if waypoint controller's altitude target should be used, false for position control or current altitude target // terrain_alt is returned as true if the next_dest should be considered a terrain alt bool ModeZigZag::calculate_next_dest(uint8_t dest_num, bool use_wpnav_alt, Vector3f& next_dest, bool& terrain_alt) const { // sanity check dest_num if (dest_num > 1) { return false; } // define start_pos as either A or B depending upon dest_num Vector2f start_pos = dest_num == 0 ? dest_A : dest_B; // calculate vector from A to B Vector2f AB_diff = dest_B - dest_A; // check distance between A and B if (!is_positive(AB_diff.length_squared())) { return false; } // get distance from vehicle to start_pos const Vector3f curr_pos = inertial_nav.get_position(); const Vector2f curr_pos2d = Vector2f(curr_pos.x, curr_pos.y); Vector2f veh_to_start_pos = curr_pos2d - start_pos; // lengthen AB_diff so that it is at least as long as vehicle is from start point // we need to ensure that the lines perpendicular to AB are long enough to reach the vehicle float scalar = 1.0f; if (veh_to_start_pos.length_squared() > AB_diff.length_squared()) { scalar = veh_to_start_pos.length() / AB_diff.length(); } // create a line perpendicular to AB but originating at start_pos Vector2f perp1 = start_pos + Vector2f(-AB_diff[1] * scalar, AB_diff[0] * scalar); Vector2f perp2 = start_pos + Vector2f(AB_diff[1] * scalar, -AB_diff[0] * scalar); // find the closest point on the perpendicular line const Vector2f closest2d = Vector2f::closest_point(curr_pos2d, perp1, perp2); next_dest.x = closest2d.x; next_dest.y = closest2d.y; if (use_wpnav_alt) { // get altitude target from waypoint controller terrain_alt = wp_nav->origin_and_destination_are_terrain_alt(); next_dest.z = wp_nav->get_wp_destination().z; } else { // if we have a downward facing range finder then use terrain altitude targets terrain_alt = copter.rangefinder_alt_ok() && wp_nav->rangefinder_used(); if (terrain_alt) { if (!copter.surface_tracking.get_target_alt_cm(next_dest.z)) { next_dest.z = copter.rangefinder_state.alt_cm_filt.get(); } } else { next_dest.z = pos_control->is_active_z() ? pos_control->get_alt_target() : curr_pos.z; } } return true; } #endif // MODE_ZIGZAG_ENABLED == ENABLED