/* * geo-fencing support * Andrew Tridgell, December 2011 */ #include "Plane.h" #if GEOFENCE_ENABLED == ENABLED #define MIN_GEOFENCE_POINTS 5 // index [0] for return point, must be inside polygon // index [1 to n-1] to define a polygon, minimum 3 for a triangle // index [n] (must be same as index 1 to close the polygon) /* * The state of geo-fencing. This structure is dynamically allocated * the first time it is used. This means we only pay for the pointer * and not the structure on systems where geo-fencing is not being * used. * * We store a copy of the boundary in memory as we need to access it * very quickly at runtime */ static struct GeofenceState { Vector2l *boundary; // point 0 is the return point uint32_t breach_time; int32_t guided_lat; int32_t guided_lng; uint16_t breach_count; uint8_t breach_type; GeofenceEnableReason enable_reason; uint8_t old_switch_position; uint8_t num_points; bool boundary_uptodate; bool fence_triggered; bool is_pwm_enabled; //true if above FENCE_ENABLE_PWM threshold bool is_enabled; bool floor_enabled; //typically used for landing } *geofence_state; static const StorageAccess fence_storage(StorageManager::StorageFence); /* maximum number of fencepoints */ uint8_t Plane::max_fencepoints(void) const { return MIN(255U, fence_storage.size() / sizeof(Vector2l)); } /* * fence boundaries fetch/store */ Vector2l Plane::get_fence_point_with_index(uint8_t i) const { if (i > (uint8_t)g.fence_total || i >= max_fencepoints()) { return Vector2l(0,0); } // read fence point return Vector2l(fence_storage.read_uint32(i * sizeof(Vector2l)), fence_storage.read_uint32(i * sizeof(Vector2l) + sizeof(int32_t))); } // save a fence point void Plane::set_fence_point_with_index(const Vector2l &point, unsigned i) { if (i >= (unsigned)g.fence_total.get() || i >= max_fencepoints()) { // not allowed return; } fence_storage.write_uint32(i * sizeof(Vector2l), point.x); fence_storage.write_uint32(i * sizeof(Vector2l) + sizeof(int32_t), point.y); if (geofence_state != nullptr) { geofence_state->boundary_uptodate = false; } } /* * allocate and fill the geofence state structure */ void Plane::geofence_load(void) { if (geofence_state == nullptr) { uint16_t boundary_size = sizeof(Vector2l) * max_fencepoints(); if (hal.util->available_memory() < 100 + boundary_size + sizeof(struct GeofenceState)) { // too risky to enable as we could run out of stack geofence_disable_and_send_error_msg("low on memory"); return; } geofence_state = (struct GeofenceState *)calloc(1, sizeof(struct GeofenceState)); if (geofence_state == nullptr) { // not much we can do here except disable it geofence_disable_and_send_error_msg("failed to init state memory"); return; } geofence_state->boundary = (Vector2l *)calloc(1, boundary_size); if (geofence_state->boundary == nullptr) { free(geofence_state); geofence_state = nullptr; geofence_disable_and_send_error_msg("failed to init boundary memory"); return; } geofence_state->old_switch_position = 254; } if (g.fence_total <= 0) { g.fence_total.set(0); return; } for (uint8_t i = 0; iboundary[i] = get_fence_point_with_index(i); } geofence_state->num_points = g.fence_total; if (!Polygon_complete(&geofence_state->boundary[1], geofence_state->num_points-1)) { geofence_disable_and_send_error_msg("pt[1] and pt[total-1] must match"); return; } if (Polygon_outside(geofence_state->boundary[0], &geofence_state->boundary[1], geofence_state->num_points-1)) { geofence_disable_and_send_error_msg("pt[0] must be inside fence"); return; } geofence_state->boundary_uptodate = true; geofence_state->fence_triggered = false; gcs().send_text(MAV_SEVERITY_INFO,"Geofence loaded"); gcs().send_message(MSG_FENCE_STATUS); } /* * Disable geofence and send an error message string */ void Plane::geofence_disable_and_send_error_msg(const char *errorMsg) { g.fence_action.set(FENCE_ACTION_NONE); gcs().send_text(MAV_SEVERITY_WARNING,"Geofence error, %s", errorMsg); } /* * return true if a geo-fence has been uploaded and * FENCE_ACTION is 1 (not necessarily enabled) */ bool Plane::geofence_present(void) { //require at least a return point and a triangle //to define a geofence area: if (g.fence_action == FENCE_ACTION_NONE || g.fence_total < MIN_GEOFENCE_POINTS) { return false; } return true; } /* check FENCE_CHANNEL and update the is_pwm_enabled state */ void Plane::geofence_update_pwm_enabled_state() { if (rc_failsafe_active()) { // do nothing based on the radio channel value as it may be at bind value return; } bool is_pwm_enabled; if (g.fence_channel == 0) { is_pwm_enabled = false; } else { is_pwm_enabled = (RC_Channels::get_radio_in(g.fence_channel-1) > FENCE_ENABLE_PWM); } if (is_pwm_enabled && geofence_state == nullptr) { // we need to load the fence geofence_load(); return; } if (geofence_state == nullptr) { // not loaded return; } if (geofence_state->is_pwm_enabled != is_pwm_enabled) { geofence_set_enabled(is_pwm_enabled, PWM_TOGGLED); geofence_state->is_pwm_enabled = is_pwm_enabled; } } //return true on success, false on failure bool Plane::geofence_set_enabled(bool enable, GeofenceEnableReason r) { if (geofence_state == nullptr && enable) { geofence_load(); } if (geofence_state == nullptr) { return false; } geofence_state->is_enabled = enable; if (enable == true) { //turn the floor back on if it had been off geofence_set_floor_enabled(true); } geofence_state->enable_reason = r; return true; } /* * return true if geo-fencing is enabled */ bool Plane::geofence_enabled(void) { geofence_update_pwm_enabled_state(); if (geofence_state == nullptr) { return false; } if (g.fence_action == FENCE_ACTION_NONE || !geofence_present() || (g.fence_action != FENCE_ACTION_REPORT && !geofence_state->is_enabled)) { // geo-fencing is disabled // re-arm for when the channel trigger is switched on geofence_state->fence_triggered = false; return false; } return true; } /* * Set floor state IF the fence is present. * Return false on failure to set floor state. */ bool Plane::geofence_set_floor_enabled(bool floor_enable) { if (geofence_state == nullptr) { return false; } geofence_state->floor_enabled = floor_enable; return true; } /* * return true if we have breached the geo-fence minimum altiude */ bool Plane::geofence_check_minalt(void) { if (g.fence_maxalt <= g.fence_minalt) { return false; } if (g.fence_minalt == 0) { return false; } return (adjusted_altitude_cm() < (g.fence_minalt*100.0f) + home.alt); } /* * return true if we have breached the geo-fence maximum altiude */ bool Plane::geofence_check_maxalt(void) { if (g.fence_maxalt <= g.fence_minalt) { return false; } if (g.fence_maxalt == 0) { return false; } return (adjusted_altitude_cm() > (g.fence_maxalt*100.0f) + home.alt); } /* pre-arm check for being inside the fence */ bool Plane::geofence_prearm_check(void) { if (!geofence_enabled()) { gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: Fence not enabled"); return false; } /* allocate the geo-fence state if need be */ if (geofence_state == nullptr || !geofence_state->boundary_uptodate) { geofence_load(); if (!geofence_enabled()) { // may have been disabled by load gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: Fence load failed"); return false; } } if (geofence_state->floor_enabled && g.fence_minalt != 0) { // can't use minalt with prearm check gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: Fence floor enabled"); return false; } if (geofence_check_maxalt()) { gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: maxalt breached"); return false; } struct Location loc; if (!ahrs.get_position(loc)) { gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: no position available"); // must have position return false; } Vector2l location; location.x = loc.lat; location.y = loc.lng; bool outside = Polygon_outside(location, &geofence_state->boundary[1], geofence_state->num_points-1); if (outside) { gcs().send_text(MAV_SEVERITY_WARNING, "PreArm: outside fence"); return false; } return true; } /* * check if we have breached the geo-fence */ void Plane::geofence_check(bool altitude_check_only) { if (!geofence_enabled()) { // switch back to the chosen control mode if still in // GUIDED to the return point if (geofence_state != nullptr && (g.fence_action == FENCE_ACTION_GUIDED || g.fence_action == FENCE_ACTION_GUIDED_THR_PASS || g.fence_action == FENCE_ACTION_RTL) && (control_mode == &mode_guided || control_mode == &mode_avoidADSB) && geofence_present() && geofence_state->boundary_uptodate && geofence_state->old_switch_position == oldSwitchPosition && guided_WP_loc.lat == geofence_state->guided_lat && guided_WP_loc.lng == geofence_state->guided_lng) { geofence_state->old_switch_position = 254; set_mode(*previous_mode, MODE_REASON_GCS_COMMAND); } return; } /* allocate the geo-fence state if need be */ if (geofence_state == nullptr || !geofence_state->boundary_uptodate) { geofence_load(); if (!geofence_enabled()) { // may have been disabled by load return; } } bool outside = false; uint8_t breach_type = FENCE_BREACH_NONE; struct Location loc; // Never trigger a fence breach in the final stage of landing if (landing.is_expecting_impact()) { return; } if (geofence_state->floor_enabled && geofence_check_minalt()) { outside = true; breach_type = FENCE_BREACH_MINALT; } else if (geofence_check_maxalt()) { outside = true; breach_type = FENCE_BREACH_MAXALT; } else if (!altitude_check_only && ahrs.get_position(loc)) { Vector2l location; location.x = loc.lat; location.y = loc.lng; outside = Polygon_outside(location, &geofence_state->boundary[1], geofence_state->num_points-1); if (outside) { breach_type = FENCE_BREACH_BOUNDARY; } } if (!outside) { if (geofence_state->fence_triggered && !altitude_check_only) { // we have moved back inside the fence geofence_state->fence_triggered = false; gcs().send_text(MAV_SEVERITY_INFO,"Geofence OK"); #if FENCE_TRIGGERED_PIN > 0 hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT); hal.gpio->write(FENCE_TRIGGERED_PIN, 0); #endif gcs().send_message(MSG_FENCE_STATUS); } // we're inside, all is good with the world return; } // we are outside the fence if (geofence_state->fence_triggered && (control_mode == &mode_guided || control_mode == &mode_avoidADSB || control_mode == &mode_rtl || g.fence_action == FENCE_ACTION_REPORT)) { // we have already triggered, don't trigger again until the // user disables/re-enables using the fence channel switch return; } // we are outside, and have not previously triggered. geofence_state->fence_triggered = true; geofence_state->breach_count++; geofence_state->breach_time = millis(); geofence_state->breach_type = breach_type; #if FENCE_TRIGGERED_PIN > 0 hal.gpio->pinMode(FENCE_TRIGGERED_PIN, HAL_GPIO_OUTPUT); hal.gpio->write(FENCE_TRIGGERED_PIN, 1); #endif gcs().send_text(MAV_SEVERITY_NOTICE,"Geofence triggered"); gcs().send_message(MSG_FENCE_STATUS); // see what action the user wants switch (g.fence_action) { case FENCE_ACTION_REPORT: break; case FENCE_ACTION_GUIDED: case FENCE_ACTION_GUIDED_THR_PASS: case FENCE_ACTION_RTL: // make sure we don't auto trim the surfaces on this mode change int8_t saved_auto_trim = g.auto_trim; g.auto_trim.set(0); if (g.fence_action == FENCE_ACTION_RTL) { set_mode(mode_rtl, MODE_REASON_FENCE_BREACH); } else { set_mode(mode_guided, MODE_REASON_FENCE_BREACH); } g.auto_trim.set(saved_auto_trim); if (g.fence_ret_rally != 0 || g.fence_action == FENCE_ACTION_RTL) { //return to a rally point guided_WP_loc = rally.calc_best_rally_or_home_location(current_loc, get_RTL_altitude()); } else { //return to fence return point, not a rally point guided_WP_loc = {}; if (g.fence_retalt > 0) { //fly to the return point using fence_retalt guided_WP_loc.alt = home.alt + 100.0f*g.fence_retalt; } else if (g.fence_minalt >= g.fence_maxalt) { // invalid min/max, use RTL_altitude guided_WP_loc.alt = home.alt + g.RTL_altitude_cm; } else { // fly to the return point, with an altitude half way between // min and max guided_WP_loc.alt = home.alt + 100.0f*(g.fence_minalt + g.fence_maxalt)/2; } guided_WP_loc.lat = geofence_state->boundary[0].x; guided_WP_loc.lng = geofence_state->boundary[0].y; } geofence_state->guided_lat = guided_WP_loc.lat; geofence_state->guided_lng = guided_WP_loc.lng; geofence_state->old_switch_position = oldSwitchPosition; if (g.fence_action != FENCE_ACTION_RTL) { //not needed for RTL mode setup_terrain_target_alt(guided_WP_loc); set_guided_WP(); } if (g.fence_action == FENCE_ACTION_GUIDED_THR_PASS) { guided_throttle_passthru = true; } break; } } /* * return true if geofencing allows stick mixing. When we have * triggered failsafe and are in GUIDED mode then stick mixing is * disabled. Otherwise the aircraft may not be able to recover from * a breach of the geo-fence */ bool Plane::geofence_stickmixing(void) { if (geofence_enabled() && geofence_state != nullptr && geofence_state->fence_triggered && (control_mode == &mode_guided || control_mode == &mode_avoidADSB)) { // don't mix in user input return false; } // normal mixing rules return true; } /* * */ void Plane::geofence_send_status(mavlink_channel_t chan) { if (geofence_enabled() && geofence_state != nullptr) { mavlink_msg_fence_status_send(chan, (int8_t)geofence_state->fence_triggered, geofence_state->breach_count, geofence_state->breach_type, geofence_state->breach_time); } } /* return true if geofence has been breached */ bool Plane::geofence_breached(void) { return geofence_state ? geofence_state->fence_triggered : false; } #else // GEOFENCE_ENABLED void Plane::geofence_check(bool altitude_check_only) { } bool Plane::geofence_stickmixing(void) { return true; } bool Plane::geofence_enabled(void) { return false; } bool Plane::geofence_present(void) { return false; } bool Plane::geofence_set_enabled(bool enable, GeofenceEnableReason r) { return false; } bool Plane::geofence_set_floor_enabled(bool floor_enable) { return false; } bool Plane::geofence_breached(void) { return false; } #endif // GEOFENCE_ENABLED