/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #include #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include #endif // table of user settable parameters const AP_Param::GroupInfo AP_InertialNav::var_info[] PROGMEM = { // @Param: ACORR // @DisplayName: Inertial Nav calculated accelerometer corrections // @Description: calculated accelerometer corrections // @Increment: 1 AP_GROUPINFO("ACORR", 0, AP_InertialNav, accel_correction, 0), // @Param: TC_XY // @DisplayName: Horizontal Time Constant // @Description: Time constant for GPS and accel mixing. Higher TC decreases GPS impact on position estimate // @Range: 0 10 // @Increment: 0.1 AP_GROUPINFO("TC_XY", 1, AP_InertialNav, _time_constant_xy, AP_INTERTIALNAV_TC_XY), // @Param: TC_Z // @DisplayName: Vertical Time Constant // @Description: Time constant for baro and accel mixing. Higher TC decreases barometers impact on altitude estimate // @Range: 0 10 // @Increment: 0.1 AP_GROUPINFO("TC_Z", 2, AP_InertialNav, _time_constant_z, AP_INTERTIALNAV_TC_Z), AP_GROUPEND }; // init - initialise library void AP_InertialNav::init() { // recalculate the gains update_gains(); } // save_params - save all parameters to eeprom void AP_InertialNav::save_params() { Vector3f accel_corr = accel_correction.get(); accel_corr.x = constrain(accel_corr.x,-100,100); accel_corr.y = constrain(accel_corr.y,-100,100); accel_corr.z = constrain(accel_corr.z,-100,100); accel_correction.set_and_save(accel_corr); } // update - updates velocities and positions using latest info from ahrs, ins and barometer if new data is available; void AP_InertialNav::update(float dt) { Vector3f acc_corr = accel_correction.get(); Vector3f accel_ef; // discard samples where dt is too large if( dt > 0.1 ) { return; } // check barometer check_baro(); // check gps check_gps(); // convert accelerometer readings to earth frame Matrix3f dcm = _ahrs->get_dcm_matrix(); accel_ef = _ahrs->get_accel_ef(); // remove influence of gravity accel_ef.z += AP_INTERTIALNAV_GRAVITY; accel_ef *= 100; // remove xy if not enabled if( !_xy_enabled ) { accel_ef.x = 0; accel_ef.y = 0; } // get earth frame accelerometer correction accel_correction_ef = dcm * acc_corr; // calculate velocity by adding new acceleration from accelerometers _velocity += (-accel_ef + accel_correction_ef) * dt; // calculate new estimate of position _position_base += _velocity * dt; // store 3rd order estimate (i.e. estimated vertical position) for future use _hist_position_estimate_z.add(_position_base.z); // store 3rd order estimate (i.e. horizontal position) for future use at 10hz _historic_xy_counter++; if( _historic_xy_counter >= AP_INTERTIALNAV_SAVE_POS_AFTER_ITERATIONS ) { _historic_xy_counter = 0; _hist_position_estimate_x.add(_position_base.x); _hist_position_estimate_y.add(_position_base.y); } } // // XY Axis specific methods // // set time constant - set timeconstant used by complementary filter void AP_InertialNav::set_time_constant_xy( float time_constant_in_seconds ) { // ensure it's a reasonable value if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) { _time_constant_xy = time_constant_in_seconds; update_gains(); } } // position_ok - return true if position has been initialised and have received gps data within 3 seconds bool AP_InertialNav::position_ok() { return _xy_enabled && (millis() - _gps_last_update < 3000); } // check_gps - check if new gps readings have arrived and use them to correct position estimates void AP_InertialNav::check_gps() { uint32_t gps_time; uint32_t now; if( _gps_ptr == NULL || *_gps_ptr == NULL ) return; // get time according to the gps gps_time = (*_gps_ptr)->time; // compare gps time to previous reading if( gps_time != _gps_last_time ) { // calculate time since last gps reading now = millis(); float dt = (float)(now - _gps_last_update) / 1000.0; // call position correction method correct_with_gps((*_gps_ptr)->longitude, (*_gps_ptr)->latitude, dt); // record gps time and system time of this update _gps_last_time = gps_time; _gps_last_update = now; } } // correct_with_gps - modifies accelerometer offsets using gps. dt is time since last gps update void AP_InertialNav::correct_with_gps(int32_t lon, int32_t lat, float dt) { float x,y; float hist_position_base_x, hist_position_base_y; // discard samples where dt is too large if( dt > 1.0 || dt == 0 || !_xy_enabled) { return; } // calculate distance from base location //x = (float)(lat - _base_lat) * 1.113195; //y = (float)(lon - _base_lon) * _lon_to_m_scaling * 1.113195; x = (float)(lat - _base_lat); y = (float)(lon - _base_lon) * _lon_to_m_scaling; // convert accelerometer readings to earth frame Matrix3f dcm = _ahrs->get_dcm_matrix(); // correct accelerometer offsets using gps // ublox gps positions are delayed by 400ms // we store historical position at 10hz so 4 iterations ago if( _hist_position_estimate_x.num_items() >= AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS ) { hist_position_base_x = _hist_position_estimate_x.peek(AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS-1); hist_position_base_y = _hist_position_estimate_y.peek(AP_INTERTIALNAV_GPS_LAG_IN_10HZ_INCREMENTS-1); }else{ hist_position_base_x = _position_base.x; hist_position_base_y = _position_base.y; } // calculate error in position from gps with our historical estimate // To-Do: check why x and y are reversed float err_x = -x - (hist_position_base_x + _position_correction.x); float err_y = -y - (hist_position_base_y + _position_correction.y); // calculate correction to accelerometers and apply in the body frame Vector3f accel_corr = accel_correction.get(); accel_corr += dcm.mul_transpose(Vector3f((err_x*_k3_xy)*dt,(err_y*_k3_xy)*dt,0)); accel_correction.set(accel_corr); // correct velocity _velocity.x += (err_x*_k2_xy) * dt; _velocity.y += (err_y*_k2_xy) * dt; // correct position _position_correction.x += err_x*_k1_xy * dt; _position_correction.y += err_y*_k1_xy * dt; } // get accel based latitude int32_t AP_InertialNav::get_latitude() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } //return _base_lat - (int32_t)(_position.x / 1.113195); return _base_lat - (int32_t)(_position_base.x + _position_correction.x); } // get accel based longitude int32_t AP_InertialNav::get_longitude() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } //return _base_lon - (int32_t)(_position.y / (_lon_to_m_scaling * 1.113195) ); return _base_lon - (int32_t)((_position_base.y+_position_correction.y) / _lon_to_m_scaling ); } // set_current_position - all internal calculations are recorded as the distances from this point void AP_InertialNav::set_current_position(int32_t lon, int32_t lat) { // set base location _base_lon = lon; _base_lat = lat; // set longitude->meters scaling // this is used to offset the shrinking longitude as we go towards the poles _lon_to_m_scaling = cos((fabs((float)lat)/10000000.0) * 0.0174532925); // reset corrections to base position to zero _position_base.x = 0; _position_base.y = 0; _position_correction.x = 0; _position_correction.y = 0; // clear historic estimates _hist_position_estimate_x.clear(); _hist_position_estimate_y.clear(); // set xy as enabled _xy_enabled = true; } // get accel based latitude float AP_InertialNav::get_latitude_diff() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } //return _base_lat + (int32_t)_position.x; //return -_position.x / 1.113195; return -(_position_base.x+_position_correction.x); } // get accel based longitude float AP_InertialNav::get_longitude_diff() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } //return _base_lon - (int32_t)(_position.x / _lon_to_m_scaling); //return -_position.y / (_lon_to_m_scaling * 1.113195); return -(_position_base.y+_position_correction.y) / _lon_to_m_scaling; } // get velocity in latitude & longitude directions float AP_InertialNav::get_latitude_velocity() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } return -_velocity.x; // Note: is +_velocity.x the output velocity in logs is in reverse direction from accel lat } float AP_InertialNav::get_longitude_velocity() { // make sure we've been initialised if( !_xy_enabled ) { return 0; } return -_velocity.y; } // set_velocity_xy - set velocity in latitude & longitude directions (in cm/s) void AP_InertialNav::set_velocity_xy(float x, float y) { _velocity.x = x; _velocity.y = y; } // // Z Axis methods // // set time constant - set timeconstant used by complementary filter void AP_InertialNav::set_time_constant_z( float time_constant_in_seconds ) { // ensure it's a reasonable value if( time_constant_in_seconds > 0 && time_constant_in_seconds < 30 ) { _time_constant_z = time_constant_in_seconds; update_gains(); } } // check_baro - check if new baro readings have arrived and use them to correct vertical accelerometer offsets void AP_InertialNav::check_baro() { uint32_t baro_update_time; if( _baro == NULL ) return; // calculate time since last baro reading baro_update_time = _baro->get_last_update(); if( baro_update_time != _baro_last_update ) { float dt = (float)(baro_update_time - _baro_last_update) / 1000.0; // call correction method correct_with_baro(_baro->get_altitude()*100, dt); _baro_last_update = baro_update_time; } } // correct_with_baro - modifies accelerometer offsets using barometer. dt is time since last baro reading void AP_InertialNav::correct_with_baro(float baro_alt, float dt) { static uint8_t first_reads = 0; float hist_position_base_z; float accel_ef_z_correction; // discard samples where dt is too large if( dt > 0.2 ) { return; } // discard first 10 reads but perform some initialisation if( first_reads <= 10 ) { set_altitude(baro_alt); first_reads++; } // get dcm matrix Matrix3f dcm = _ahrs->get_dcm_matrix(); // 3rd order samples (i.e. position from baro) are delayed by 150ms (15 iterations at 100hz) // so we should calculate error using historical estimates if( _hist_position_estimate_z.num_items() >= 15 ) { hist_position_base_z = _hist_position_estimate_z.peek(14); }else{ hist_position_base_z = _position_base.z; } // calculate error in position from baro with our estimate float err = baro_alt - (hist_position_base_z + _position_correction.z); // retrieve the existing accelerometer corrections Vector3f accel_corr = accel_correction.get(); // calculate the accelerometer correction from this iteration in the earth frame accel_ef_z_correction = err * _k3_z * dt; // rotate the correction into the body frame (note: this is a shortened form of dcm.mul_transpose(..) because we have only one axis accel_corr.x += accel_ef_z_correction * dcm.c.x; accel_corr.y += accel_ef_z_correction * dcm.c.y; accel_corr.z += accel_ef_z_correction * dcm.c.z; accel_correction.set(accel_corr); // correct velocity _velocity.z += (err*_k2_z) * dt; // correct position _position_correction.z += err*_k1_z * dt; } // set_altitude - set base altitude estimate in cm void AP_InertialNav::set_altitude( float new_altitude) { _position_base.z = new_altitude; _position_correction.z = 0; } // // Private methods // // update_gains - update gains from time constant (given in seconds) void AP_InertialNav::update_gains() { // X & Y axis time constant if( _time_constant_xy == 0 ) { _k1_xy = _k2_xy = _k3_xy = 0; }else{ _k1_xy = 3 / _time_constant_xy; _k2_xy = 3 / (_time_constant_xy*_time_constant_xy); _k3_xy = 1 / (_time_constant_xy*_time_constant_xy*_time_constant_xy); } // Z axis time constant if( _time_constant_z == 0 ) { _k1_z = _k2_z = _k3_z = 0; }else{ _k1_z = 3 / _time_constant_z; _k2_z = 3 / (_time_constant_z*_time_constant_z); _k3_z = 1 / (_time_constant_z*_time_constant_z*_time_constant_z); } } // set_velocity_z - get latest climb rate (in cm/s) void AP_InertialNav::set_velocity_z(float z ) { _velocity.z = z; }