/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #define ARM_DELAY 20 // called at 10hz so 2 seconds #define DISARM_DELAY 20 // called at 10hz so 2 seconds #define AUTO_TRIM_DELAY 100 // called at 10hz so 10 seconds #define AUTO_DISARMING_DELAY 15 // called at 1hz so 15 seconds // arm_motors_check - checks for pilot input to arm or disarm the copter // called at 10hz static void arm_motors_check() { static int16_t arming_counter; bool allow_arming = false; // ensure throttle is down if (g.rc_3.control_in > 0) { arming_counter = 0; return; } // allow arming/disarming in fully manual flight modes ACRO, STABILIZE, SPORT and DRIFT if (manual_flight_mode(control_mode)) { allow_arming = true; } // allow arming/disarming in Loiter and AltHold if landed if (ap.land_complete && (control_mode == LOITER || control_mode == ALT_HOLD)) { allow_arming = true; } // kick out other flight modes if (!allow_arming) { arming_counter = 0; return; } #if FRAME_CONFIG == HELI_FRAME // heli specific arming check if (!motors.allow_arming()){ arming_counter = 0; return; } #endif // HELI_FRAME int16_t tmp = g.rc_4.control_in; // full right if (tmp > 4000) { // increase the arming counter to a maximum of 1 beyond the auto trim counter if( arming_counter <= AUTO_TRIM_DELAY ) { arming_counter++; } // arm the motors and configure for flight if (arming_counter == ARM_DELAY && !motors.armed()) { // run pre-arm-checks and display failures pre_arm_checks(true); if(ap.pre_arm_check && arm_checks(true)) { init_arm_motors(); }else{ // reset arming counter if pre-arm checks fail arming_counter = 0; } } // arm the motors and configure for flight if (arming_counter == AUTO_TRIM_DELAY && motors.armed() && control_mode == STABILIZE) { auto_trim_counter = 250; } // full left }else if (tmp < -4000) { // increase the counter to a maximum of 1 beyond the disarm delay if( arming_counter <= DISARM_DELAY ) { arming_counter++; } // disarm the motors if (arming_counter == DISARM_DELAY && motors.armed()) { init_disarm_motors(); } // Yaw is centered so reset arming counter }else{ arming_counter = 0; } } // auto_disarm_check - disarms the copter if it has been sitting on the ground in manual mode with throttle low for at least 15 seconds // called at 1hz static void auto_disarm_check() { static uint8_t auto_disarming_counter; // exit immediately if we are already disarmed or throttle is not zero if (!motors.armed() || g.rc_3.control_in > 0) { auto_disarming_counter = 0; return; } // allow auto disarm in manual flight modes or Loiter/AltHold if we're landed if(manual_flight_mode(control_mode) || (ap.land_complete && (control_mode == LOITER || control_mode == ALT_HOLD))) { auto_disarming_counter++; if(auto_disarming_counter >= AUTO_DISARMING_DELAY) { init_disarm_motors(); auto_disarming_counter = 0; } }else{ auto_disarming_counter = 0; } } // init_arm_motors - performs arming process including initialisation of barometer and gyros static void init_arm_motors() { // arming marker // Flag used to track if we have armed the motors the first time. // This is used to decide if we should run the ground_start routine // which calibrates the IMU static bool did_ground_start = false; // disable cpu failsafe because initialising everything takes a while failsafe_disable(); // disable inertial nav errors temporarily inertial_nav.ignore_next_error(); #if LOGGING_ENABLED == ENABLED // start dataflash start_logging(); #endif #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL gcs_send_text_P(SEVERITY_HIGH, PSTR("ARMING MOTORS")); #endif // we don't want writes to the serial port to cause us to pause // mid-flight, so set the serial ports non-blocking once we arm // the motors hal.uartA->set_blocking_writes(false); hal.uartC->set_blocking_writes(false); if (hal.uartD != NULL) { hal.uartD->set_blocking_writes(false); } // Remember Orientation // -------------------- init_simple_bearing(); initial_armed_bearing = ahrs.yaw_sensor; // Reset home position // ------------------- if (ap.home_is_set) { init_home(); calc_distance_and_bearing(); } if(did_ground_start == false) { did_ground_start = true; startup_ground(true); } // fast baro calibration to reset ground pressure init_barometer(false); // go back to normal AHRS gains ahrs.set_fast_gains(false); // enable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(true); // set hover throttle motors.set_mid_throttle(g.throttle_mid); // Cancel arming if throttle is raised too high so that copter does not suddenly take off read_radio(); if (g.rc_3.control_in > g.throttle_cruise && g.throttle_cruise > 100) { motors.output_min(); failsafe_enable(); return; } #if SPRAYER == ENABLED // turn off sprayer's test if on sprayer.test_pump(false); #endif // enable output to motors output_min(); // finally actually arm the motors motors.armed(true); // log arming to dataflash Log_Write_Event(DATA_ARMED); // reenable failsafe failsafe_enable(); } // perform pre-arm checks and set ap.pre_arm_check flag static void pre_arm_checks(bool display_failure) { // exit immediately if we've already successfully performed the pre-arm check if (ap.pre_arm_check) { return; } // succeed if pre arm checks are disabled if(g.arming_check == ARMING_CHECK_NONE) { set_pre_arm_check(true); set_pre_arm_rc_check(true); return; } // pre-arm rc checks a prerequisite pre_arm_rc_checks(); if(!ap.pre_arm_rc_check) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: RC not calibrated")); } return; } // check Baro if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { // barometer health check if(!barometer.healthy) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Baro not healthy")); } return; } // check Baro & inav alt are within 1m if(fabs(inertial_nav.get_altitude() - baro_alt) > 100) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Alt disparity")); } return; } } // check Compass if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_COMPASS)) { // check the compass is healthy if(!compass.healthy()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not healthy")); } return; } // check compass learning is on or offsets have been set Vector3f offsets = compass.get_offsets(); if(!compass._learn && offsets.length() == 0) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass not calibrated")); } return; } // check for unreasonable compass offsets if(offsets.length() > 500) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Compass offsets too high")); } return; } // check for unreasonable mag field length float mag_field = compass.get_field().length(); if (mag_field > COMPASS_MAGFIELD_EXPECTED*1.65 || mag_field < COMPASS_MAGFIELD_EXPECTED*0.35) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check mag field")); } return; } } // check GPS if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_GPS)) { // check gps is ok if required - note this same check is repeated again in arm_checks if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks(display_failure)) { return; } #if AC_FENCE == ENABLED // check fence is initialised if(!fence.pre_arm_check() || (((fence.get_enabled_fences() & AC_FENCE_TYPE_CIRCLE) != 0) && !pre_arm_gps_checks(display_failure))) { return; } #endif } // check INS if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { // check accelerometers have been calibrated if(!ins.calibrated()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not calibrated")); } return; } // check accels and gyros are healthy if(!ins.healthy()) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: INS not healthy")); } return; } } #ifndef CONFIG_ARCH_BOARD_PX4FMU_V1 // check board voltage if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_VOLTAGE)) { if(hal.analogin->board_voltage() < BOARD_VOLTAGE_MIN || hal.analogin->board_voltage() > BOARD_VOLTAGE_MAX) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check Board Voltage")); } return; } } #endif // check various parameter values if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { // ensure ch7 and ch8 have different functions if ((g.ch7_option != 0 || g.ch8_option != 0) && g.ch7_option == g.ch8_option) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Ch7&Ch8 Opt cannot be same")); } return; } // failsafe parameter checks if (g.failsafe_throttle) { // check throttle min is above throttle failsafe trigger and that the trigger is above ppm encoder's loss-of-signal value of 900 if (g.rc_3.radio_min <= g.failsafe_throttle_value+10 || g.failsafe_throttle_value < 910) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check FS_THR_VALUE")); } return; } } // lean angle parameter check if (aparm.angle_max < 1000 || aparm.angle_max > 8000) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Check ANGLE_MAX")); } return; } // acro balance parameter check if ((g.acro_balance_roll > g.pi_stabilize_roll.kP()) || (g.acro_balance_pitch > g.pi_stabilize_pitch.kP())) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: ACRO_BAL_ROLL/PITCH")); } return; } } // if we've gotten this far then pre arm checks have completed set_pre_arm_check(true); } // perform pre_arm_rc_checks checks and set ap.pre_arm_rc_check flag static void pre_arm_rc_checks() { // exit immediately if we've already successfully performed the pre-arm rc check if( ap.pre_arm_rc_check ) { return; } // set rc-checks to success if RC checks are disabled if ((g.arming_check != ARMING_CHECK_ALL) && !(g.arming_check & ARMING_CHECK_RC)) { set_pre_arm_rc_check(true); return; } // check if radio has been calibrated if(!g.rc_3.radio_min.load() && !g.rc_3.radio_max.load()) { return; } // check channels 1 & 2 have min <= 1300 and max >= 1700 if (g.rc_1.radio_min > 1300 || g.rc_1.radio_max < 1700 || g.rc_2.radio_min > 1300 || g.rc_2.radio_max < 1700) { return; } // check channels 3 & 4 have min <= 1300 and max >= 1700 if (g.rc_3.radio_min > 1300 || g.rc_3.radio_max < 1700 || g.rc_4.radio_min > 1300 || g.rc_4.radio_max < 1700) { return; } // if we've gotten this far rc is ok set_pre_arm_rc_check(true); } // performs pre_arm gps related checks and returns true if passed static bool pre_arm_gps_checks(bool display_failure) { float speed_cms = inertial_nav.get_velocity().length(); // speed according to inertial nav in cm/s // ensure GPS is ok and our speed is below 50cm/s if (!GPS_ok() || gps_glitch.glitching() || speed_cms == 0 || speed_cms > PREARM_MAX_VELOCITY_CMS) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: Bad GPS Pos")); } return false; } // warn about hdop separately - to prevent user confusion with no gps lock if (g_gps->hdop > g.gps_hdop_good) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("PreArm: High GPS HDOP")); } return false; } // if we got here all must be ok return true; } // arm_checks - perform final checks before arming // always called just before arming. Return true if ok to arm static bool arm_checks(bool display_failure) { // succeed if arming checks are disabled if (g.arming_check == ARMING_CHECK_NONE) { return true; } // check Baro & inav alt are within 1m if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_BARO)) { if(fabs(inertial_nav.get_altitude() - baro_alt) > 100) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Alt disparity")); } return false; } } // check gps is ok if required - note this same check is also done in pre-arm checks if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_GPS)) { if ((mode_requires_GPS(control_mode) || g.failsafe_gps_enabled == FS_GPS_LAND_EVEN_STABILIZE) && !pre_arm_gps_checks(display_failure)) { return false; } } // check parameters if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_PARAMETERS)) { // check throttle is above failsafe throttle if (g.failsafe_throttle != FS_THR_DISABLED && g.rc_3.radio_in < g.failsafe_throttle_value) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Thr below FS")); } return false; } } // check lean angle if ((g.arming_check == ARMING_CHECK_ALL) || (g.arming_check & ARMING_CHECK_INS)) { if (labs(ahrs.roll_sensor) > aparm.angle_max || labs(ahrs.pitch_sensor) > aparm.angle_max) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Leaning")); } return false; } } // check if safety switch has been pushed if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { if (display_failure) { gcs_send_text_P(SEVERITY_HIGH,PSTR("Arm: Safety Switch")); } return false; } // if we've gotten this far all is ok return true; } // init_disarm_motors - disarm motors static void init_disarm_motors() { // return immediately if we are already disarmed if (!motors.armed()) { return; } #if HIL_MODE != HIL_MODE_DISABLED || CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL gcs_send_text_P(SEVERITY_HIGH, PSTR("DISARMING MOTORS")); #endif motors.armed(false); // disable inertial nav errors temporarily inertial_nav.ignore_next_error(); compass.save_offsets(); g.throttle_cruise.save(); #if AUTOTUNE_ENABLED == ENABLED // save auto tuned parameters autotune_save_tuning_gains(); #endif // we are not in the air set_land_complete(true); // setup fast AHRS gains to get right attitude ahrs.set_fast_gains(true); // log disarm to the dataflash Log_Write_Event(DATA_DISARMED); // suspend logging DataFlash.EnableWrites(false); // disable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(false); } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos_4() { #if FRAME_CONFIG == TRI_FRAME // To-Do: implement improved stability patch for tri so that we do not need to limit throttle input to motors g.rc_3.servo_out = min(g.rc_3.servo_out, 800); #endif motors.output(); } // servo_write - writes to a servo after checking the channel is not used for a motor static void servo_write(uint8_t ch, uint16_t pwm) { bool servo_ok = false; #if (FRAME_CONFIG == QUAD_FRAME || FRAME_CONFIG == COAX_FRAME) // Quads can use RC5 and higher as servos if (ch >= CH_5) servo_ok = true; #elif (FRAME_CONFIG == TRI_FRAME || FRAME_CONFIG == SINGLE_FRAME) // Tri's and Singles can use RC5, RC6, RC8 and higher if (ch == CH_5 || ch == CH_6 || ch >= CH_8) servo_ok = true; #elif (FRAME_CONFIG == HEXA_FRAME || FRAME_CONFIG == Y6_FRAME) // Hexa and Y6 can use RC7 and higher if (ch >= CH_7) servo_ok = true; #elif (FRAME_CONFIG == OCTA_FRAME || FRAME_CONFIG == OCTA_QUAD_FRAME) // Octa and X8 can use RC9 and higher if (ch >= CH_9) servo_ok = true; #elif (FRAME_CONFIG == HELI_FRAME) // Heli's can use RC5, RC6, RC7, not RC8, and higher if (ch == CH_5 || ch == CH_6 || ch == CH_7 || ch >= CH_9) servo_ok = true; #else // throw compile error if frame type is unrecognise #error Unrecognised frame type #endif if (servo_ok) { hal.rcout->enable_ch(ch); hal.rcout->write(ch, pwm); } }