// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if LOGGING_ENABLED == ENABLED #if CLI_ENABLED == ENABLED // Code to Write and Read packets from DataFlash log memory // Code to interact with the user to dump or erase logs // These are function definitions so the Menu can be constructed before the functions // are defined below. Order matters to the compiler. static int8_t dump_log(uint8_t argc, const Menu::arg *argv); static int8_t erase_logs(uint8_t argc, const Menu::arg *argv); static int8_t select_logs(uint8_t argc, const Menu::arg *argv); // Creates a constant array of structs representing menu options // and stores them in Flash memory, not RAM. // User enters the string in the console to call the functions on the right. // See class Menu in AP_Coommon for implementation details static const struct Menu::command log_menu_commands[] PROGMEM = { {"dump", dump_log}, {"erase", erase_logs}, {"enable", select_logs}, {"disable", select_logs} }; // A Macro to create the Menu MENU2(log_menu, "Log", log_menu_commands, print_log_menu); static bool print_log_menu(void) { cliSerial->printf_P(PSTR("logs enabled: ")); if (0 == g.log_bitmask) { cliSerial->printf_P(PSTR("none")); }else{ // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // the bit being set and print the name of the log option to suit. #define PLOG(_s) if (g.log_bitmask & MASK_LOG_ ## _s) cliSerial->printf_P(PSTR(" %S"), PSTR(#_s)) PLOG(ATTITUDE_FAST); PLOG(ATTITUDE_MED); PLOG(GPS); PLOG(PM); PLOG(CTUN); PLOG(NTUN); PLOG(MODE); PLOG(IMU); PLOG(CMD); PLOG(CURRENT); PLOG(SONAR); PLOG(COMPASS); PLOG(CAMERA); PLOG(STEERING); #undef PLOG } cliSerial->println(); DataFlash.ListAvailableLogs(cliSerial); return(true); } static int8_t dump_log(uint8_t argc, const Menu::arg *argv) { int16_t dump_log; uint16_t dump_log_start; uint16_t dump_log_end; uint16_t last_log_num; // check that the requested log number can be read dump_log = argv[1].i; last_log_num = DataFlash.find_last_log(); if (dump_log == -2) { DataFlash.DumpPageInfo(cliSerial); return(-1); } else if (dump_log <= 0) { cliSerial->printf_P(PSTR("dumping all\n")); Log_Read(0, 1, 0); return(-1); } else if ((argc != 2) || ((uint16_t)dump_log > last_log_num)) { cliSerial->printf_P(PSTR("bad log number\n")); return(-1); } DataFlash.get_log_boundaries(dump_log, dump_log_start, dump_log_end); Log_Read((uint16_t)dump_log, dump_log_start, dump_log_end); return 0; } static int8_t erase_logs(uint8_t argc, const Menu::arg *argv) { in_mavlink_delay = true; do_erase_logs(); in_mavlink_delay = false; return 0; } static int8_t select_logs(uint8_t argc, const Menu::arg *argv) { uint16_t bits; if (argc != 2) { cliSerial->printf_P(PSTR("missing log type\n")); return(-1); } bits = 0; // Macro to make the following code a bit easier on the eye. // Pass it the capitalised name of the log option, as defined // in defines.h but without the LOG_ prefix. It will check for // that name as the argument to the command, and set the bit in // bits accordingly. // if (!strcasecmp_P(argv[1].str, PSTR("all"))) { bits = ~0; } else { #define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= MASK_LOG_ ## _s TARG(ATTITUDE_FAST); TARG(ATTITUDE_MED); TARG(GPS); TARG(PM); TARG(CTUN); TARG(NTUN); TARG(MODE); TARG(IMU); TARG(CMD); TARG(CURRENT); TARG(SONAR); TARG(COMPASS); TARG(CAMERA); TARG(STEERING); #undef TARG } if (!strcasecmp_P(argv[0].str, PSTR("enable"))) { g.log_bitmask.set_and_save(g.log_bitmask | bits); }else{ g.log_bitmask.set_and_save(g.log_bitmask & ~bits); } return(0); } static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { log_menu.run(); return 0; } #endif // CLI_ENABLED == ENABLED static void do_erase_logs(void) { cliSerial->printf_P(PSTR("\nErasing log...\n")); DataFlash.EraseAll(); cliSerial->printf_P(PSTR("\nLog erased.\n")); } struct PACKED log_Performance { LOG_PACKET_HEADER; uint32_t time_ms; uint32_t loop_time; uint16_t main_loop_count; uint32_t g_dt_max; int16_t gyro_drift_x; int16_t gyro_drift_y; int16_t gyro_drift_z; uint8_t i2c_lockup_count; uint16_t ins_error_count; }; // Write a performance monitoring packet. Total length : 19 bytes static void Log_Write_Performance() { struct log_Performance pkt = { LOG_PACKET_HEADER_INIT(LOG_PERFORMANCE_MSG), time_ms : millis(), loop_time : millis()- perf_mon_timer, main_loop_count : mainLoop_count, g_dt_max : G_Dt_max, gyro_drift_x : (int16_t)(ahrs.get_gyro_drift().x * 1000), gyro_drift_y : (int16_t)(ahrs.get_gyro_drift().y * 1000), gyro_drift_z : (int16_t)(ahrs.get_gyro_drift().z * 1000), i2c_lockup_count: hal.i2c->lockup_count(), ins_error_count : ins.error_count() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Write a mission command. Total length : 36 bytes static void Log_Write_Cmd(const AP_Mission::Mission_Command &cmd) { mavlink_mission_item_t mav_cmd = {}; AP_Mission::mission_cmd_to_mavlink(cmd,mav_cmd); DataFlash.Log_Write_MavCmd(mission.num_commands(),mav_cmd); } struct PACKED log_Steering { LOG_PACKET_HEADER; uint32_t time_ms; float demanded_accel; float achieved_accel; }; // Write a steering packet static void Log_Write_Steering() { struct log_Steering pkt = { LOG_PACKET_HEADER_INIT(LOG_STEERING_MSG), time_ms : hal.scheduler->millis(), demanded_accel : lateral_acceleration, achieved_accel : gps.ground_speed() * ins.get_gyro().z, }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Startup { LOG_PACKET_HEADER; uint32_t time_ms; uint8_t startup_type; uint16_t command_total; }; static void Log_Write_Startup(uint8_t type) { struct log_Startup pkt = { LOG_PACKET_HEADER_INIT(LOG_STARTUP_MSG), time_ms : millis(), startup_type : type, command_total : mission.num_commands() }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); // write all commands to the dataflash as well AP_Mission::Mission_Command cmd; for (uint16_t i = 0; i < mission.num_commands(); i++) { if(mission.read_cmd_from_storage(i,cmd)) { Log_Write_Cmd(cmd); } } } struct PACKED log_Control_Tuning { LOG_PACKET_HEADER; uint32_t time_ms; int16_t steer_out; int16_t roll; int16_t pitch; int16_t throttle_out; float accel_y; }; // Write a control tuning packet. Total length : 22 bytes static void Log_Write_Control_Tuning() { Vector3f accel = ins.get_accel(); struct log_Control_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_CTUN_MSG), time_ms : millis(), steer_out : (int16_t)channel_steer->servo_out, roll : (int16_t)ahrs.roll_sensor, pitch : (int16_t)ahrs.pitch_sensor, throttle_out : (int16_t)channel_throttle->servo_out, accel_y : accel.y }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } struct PACKED log_Nav_Tuning { LOG_PACKET_HEADER; uint32_t time_ms; uint16_t yaw; float wp_distance; uint16_t target_bearing_cd; uint16_t nav_bearing_cd; int8_t throttle; }; // Write a navigation tuning packet. Total length : 18 bytes static void Log_Write_Nav_Tuning() { struct log_Nav_Tuning pkt = { LOG_PACKET_HEADER_INIT(LOG_NTUN_MSG), time_ms : millis(), yaw : (uint16_t)ahrs.yaw_sensor, wp_distance : wp_distance, target_bearing_cd : (uint16_t)nav_controller->target_bearing_cd(), nav_bearing_cd : (uint16_t)nav_controller->nav_bearing_cd(), throttle : (int8_t)(100 * channel_throttle->norm_output()) }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } // Write an attitude packet static void Log_Write_Attitude() { Vector3f targets(0,0,0); // Rover does not have attitude targets, use place-holder for commonality with Dataflash Log_Write_Attitude message DataFlash.Log_Write_Attitude(ahrs, targets); #if AP_AHRS_NAVEKF_AVAILABLE #if defined(OPTFLOW) and (OPTFLOW == ENABLED) DataFlash.Log_Write_EKF(ahrs,optflow.enabled()); #else DataFlash.Log_Write_EKF(ahrs,false); #endif DataFlash.Log_Write_AHRS2(ahrs); #endif } struct PACKED log_Sonar { LOG_PACKET_HEADER; uint32_t time_ms; float lateral_accel; uint16_t sonar1_distance; uint16_t sonar2_distance; uint16_t detected_count; int8_t turn_angle; uint16_t turn_time; uint16_t ground_speed; int8_t throttle; }; // Write a sonar packet static void Log_Write_Sonar() { uint16_t turn_time = 0; if (!is_zero(obstacle.turn_angle)) { turn_time = hal.scheduler->millis() - obstacle.detected_time_ms; } struct log_Sonar pkt = { LOG_PACKET_HEADER_INIT(LOG_SONAR_MSG), time_ms : millis(), lateral_accel : lateral_acceleration, sonar1_distance : (uint16_t)sonar.distance_cm(0), sonar2_distance : (uint16_t)sonar.distance_cm(1), detected_count : obstacle.detected_count, turn_angle : (int8_t)obstacle.turn_angle, turn_time : turn_time, ground_speed : (uint16_t)(ground_speed*100), throttle : (int8_t)(100 * channel_throttle->norm_output()) }; DataFlash.WriteBlock(&pkt, sizeof(pkt)); } static void Log_Write_Current() { DataFlash.Log_Write_Current(battery, channel_throttle->control_in); // also write power status DataFlash.Log_Write_Power(); } static void Log_Write_RC(void) { DataFlash.Log_Write_RCIN(); DataFlash.Log_Write_RCOUT(); } static void Log_Write_Baro(void) { DataFlash.Log_Write_Baro(barometer); } static const struct LogStructure log_structure[] PROGMEM = { LOG_COMMON_STRUCTURES, { LOG_PERFORMANCE_MSG, sizeof(log_Performance), "PM", "IIHIhhhBH", "TimeMS,LTime,MLC,gDt,GDx,GDy,GDz,I2CErr,INSErr" }, { LOG_STARTUP_MSG, sizeof(log_Startup), "STRT", "IBH", "TimeMS,SType,CTot" }, { LOG_CTUN_MSG, sizeof(log_Control_Tuning), "CTUN", "Ihcchf", "TimeMS,Steer,Roll,Pitch,ThrOut,AccY" }, { LOG_NTUN_MSG, sizeof(log_Nav_Tuning), "NTUN", "IHfHHb", "TimeMS,Yaw,WpDist,TargBrg,NavBrg,Thr" }, { LOG_SONAR_MSG, sizeof(log_Sonar), "SONR", "IfHHHbHCb", "TimeMS,LatAcc,S1Dist,S2Dist,DCnt,TAng,TTim,Spd,Thr" }, { LOG_STEERING_MSG, sizeof(log_Steering), "STER", "Iff", "TimeMS,Demanded,Achieved" }, }; #if CLI_ENABLED == ENABLED // Read the DataFlash log memory : Packet Parser static void Log_Read(uint16_t log_num, uint16_t start_page, uint16_t end_page) { cliSerial->printf_P(PSTR("\n" FIRMWARE_STRING "\nFree RAM: %u\n"), (unsigned)hal.util->available_memory()); cliSerial->println_P(PSTR(HAL_BOARD_NAME)); DataFlash.LogReadProcess(log_num, start_page, end_page, print_mode, cliSerial); } #endif // CLI_ENABLED // start a new log static void start_logging() { in_mavlink_delay = true; DataFlash.StartNewLog(); in_mavlink_delay = false; DataFlash.Log_Write_Message_P(PSTR(FIRMWARE_STRING)); #if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION) DataFlash.Log_Write_Message_P(PSTR("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION)); #endif // write system identifier as well if available char sysid[40]; if (hal.util->get_system_id(sysid)) { DataFlash.Log_Write_Message(sysid); } } #else // LOGGING_ENABLED // dummy functions static void Log_Write_Startup(uint8_t type) {} static void Log_Write_Current() {} static void Log_Write_Nav_Tuning() {} static void Log_Write_Performance() {} static void Log_Write_Cmd(const AP_Mission::Mission_Command &cmd) {} static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { return 0; } static void Log_Write_Control_Tuning() {} static void Log_Write_Sonar() {} static void Log_Write_Attitude() {} static void start_logging() {} static void Log_Write_RC(void) {} #endif // LOGGING_ENABLED