#pragma once #include #include #include #include #include #include class AP_Airspeed_Backend; #ifndef AIRSPEED_MAX_SENSORS #define AIRSPEED_MAX_SENSORS 2 #endif #ifndef AP_AIRSPEED_AUTOCAL_ENABLE #define AP_AIRSPEED_AUTOCAL_ENABLE !defined(HAL_BUILD_AP_PERIPH) #endif #ifndef HAL_MSP_AIRSPEED_ENABLED #define HAL_MSP_AIRSPEED_ENABLED HAL_MSP_SENSORS_ENABLED #endif class Airspeed_Calibration { public: friend class AP_Airspeed; // constructor Airspeed_Calibration(); // initialise the calibration void init(float initial_ratio); // take current airspeed in m/s and ground speed vector and return // new scaling factor float update(float airspeed, const Vector3f &vg, int16_t max_airspeed_allowed_during_cal); private: // state of kalman filter for airspeed ratio estimation Matrix3f P; // covarience matrix const float Q0; // process noise matrix top left and middle element const float Q1; // process noise matrix bottom right element Vector3f state; // state vector const float DT; // time delta }; class AP_Airspeed { public: friend class AP_Airspeed_Backend; // constructor AP_Airspeed(); void init(void); #if AP_AIRSPEED_AUTOCAL_ENABLE // inflight ratio calibration void set_calibration_enabled(bool enable) {calibration_enabled = enable;} #endif //AP_AIRSPEED_AUTOCAL_ENABLE // read the analog source and update airspeed void update(bool log); // calibrate the airspeed. This must be called on startup if the // altitude/climb_rate/acceleration interfaces are ever used void calibrate(bool in_startup); // return the current airspeed in m/s float get_airspeed(uint8_t i) const { return state[i].airspeed; } float get_airspeed(void) const { return get_airspeed(primary); } // return the unfiltered airspeed in m/s float get_raw_airspeed(uint8_t i) const { return state[i].raw_airspeed; } float get_raw_airspeed(void) const { return get_raw_airspeed(primary); } // return the current airspeed ratio (dimensionless) float get_airspeed_ratio(uint8_t i) const { return param[i].ratio; } float get_airspeed_ratio(void) const { return get_airspeed_ratio(primary); } // get temperature if available bool get_temperature(uint8_t i, float &temperature); bool get_temperature(float &temperature) { return get_temperature(primary, temperature); } // set the airspeed ratio (dimensionless) void set_airspeed_ratio(uint8_t i, float ratio) { param[i].ratio.set(ratio); } void set_airspeed_ratio(float ratio) { set_airspeed_ratio(primary, ratio); } // return true if airspeed is enabled, and airspeed use is set bool use(uint8_t i) const; bool use(void) const { return use(primary); } // return true if airspeed is enabled bool enabled(uint8_t i) const { if (i < AIRSPEED_MAX_SENSORS) { return param[i].type.get() != TYPE_NONE; } return false; } bool enabled(void) const { return enabled(primary); } // return the differential pressure in Pascal for the last airspeed reading float get_differential_pressure(uint8_t i) const { return state[i].last_pressure; } float get_differential_pressure(void) const { return get_differential_pressure(primary); } // update airspeed ratio calibration void update_calibration(const Vector3f &vground, int16_t max_airspeed_allowed_during_cal); // return health status of sensor bool healthy(uint8_t i) const { bool ok = state[i].healthy && enabled(i); #ifndef HAL_BUILD_AP_PERIPH ok &= (fabsf(param[i].offset) > 0 || state[i].use_zero_offset); #endif return ok; } bool healthy(void) const { return healthy(primary); } // return true if all enabled sensors are healthy bool all_healthy(void) const; // return time in ms of last update uint32_t last_update_ms(uint8_t i) const { return state[i].last_update_ms; } uint32_t last_update_ms(void) const { return last_update_ms(primary); } static const struct AP_Param::GroupInfo var_info[]; enum pitot_tube_order { PITOT_TUBE_ORDER_POSITIVE = 0, PITOT_TUBE_ORDER_NEGATIVE = 1, PITOT_TUBE_ORDER_AUTO = 2 }; enum OptionsMask { ON_FAILURE_AHRS_WIND_MAX_DO_DISABLE = (1<<0), // If set then use airspeed failure check ON_FAILURE_AHRS_WIND_MAX_RECOVERY_DO_REENABLE = (1<<1), // If set then automatically enable the airspeed sensor use when healthy again. }; enum airspeed_type { TYPE_NONE=0, TYPE_I2C_MS4525=1, TYPE_ANALOG=2, TYPE_I2C_MS5525=3, TYPE_I2C_MS5525_ADDRESS_1=4, TYPE_I2C_MS5525_ADDRESS_2=5, TYPE_I2C_SDP3X=6, TYPE_I2C_DLVR_5IN=7, TYPE_UAVCAN=8, TYPE_I2C_DLVR_10IN=9, TYPE_I2C_DLVR_20IN=10, TYPE_I2C_DLVR_30IN=11, TYPE_I2C_DLVR_60IN=12, TYPE_NMEA_WATER=13, TYPE_MSP=14, TYPE_I2C_ASP5033=15, }; // get current primary sensor uint8_t get_primary(void) const { return primary; } // get number of sensors uint8_t get_num_sensors(void) const { return num_sensors; } static AP_Airspeed *get_singleton() { return _singleton; } // return the current corrected pressure, public for AP_Periph float get_corrected_pressure(uint8_t i) const { return state[i].corrected_pressure; } float get_corrected_pressure(void) const { return get_corrected_pressure(primary); } #if HAL_MSP_AIRSPEED_ENABLED void handle_msp(const MSP::msp_airspeed_data_message_t &pkt); #endif private: static AP_Airspeed *_singleton; AP_Int8 primary_sensor; AP_Int32 _options; // bitmask options for airspeed AP_Float _wind_max; AP_Float _wind_warn; struct { AP_Float offset; AP_Float ratio; AP_Float psi_range; AP_Int8 use; AP_Int8 type; AP_Int8 pin; AP_Int8 bus; AP_Int8 autocal; AP_Int8 tube_order; AP_Int8 skip_cal; } param[AIRSPEED_MAX_SENSORS]; struct airspeed_state { float raw_airspeed; float airspeed; float last_pressure; float filtered_pressure; float corrected_pressure; uint32_t last_update_ms; bool use_zero_offset; bool healthy; // state of runtime calibration struct { uint32_t start_ms; float sum; uint16_t count; uint16_t read_count; } cal; #if AP_AIRSPEED_AUTOCAL_ENABLE Airspeed_Calibration calibration; float last_saved_ratio; uint8_t counter; #endif // AP_AIRSPEED_AUTOCAL_ENABLE struct { uint32_t last_check_ms; float health_probability; int8_t param_use_backup; uint32_t last_warn_ms; } failures; } state[AIRSPEED_MAX_SENSORS]; bool calibration_enabled; // current primary sensor uint8_t primary; uint8_t num_sensors; void read(uint8_t i); // return the differential pressure in Pascal for the last airspeed reading for the requested instance // returns 0 if the sensor is not enabled float get_pressure(uint8_t i); // get the failure health probability float get_health_failure_probability(uint8_t i) const { return state[i].failures.health_probability; } float get_health_failure_probability(void) const { return get_health_failure_probability(primary); } void update_calibration(uint8_t i, float raw_pressure); void update_calibration(uint8_t i, const Vector3f &vground, int16_t max_airspeed_allowed_during_cal); void send_airspeed_calibration(const Vector3f &vg); // return the current calibration offset float get_offset(uint8_t i) const { return param[i].offset; } float get_offset(void) const { return get_offset(primary); } void check_sensor_failures(); void check_sensor_ahrs_wind_max_failures(uint8_t i); AP_Airspeed_Backend *sensor[AIRSPEED_MAX_SENSORS]; void Log_Airspeed(); }; namespace AP { AP_Airspeed *airspeed(); };