#include "AP_Arming.h" #include "Rover.h" // perform pre_arm_rc_checks checks bool AP_Arming_Rover::rc_calibration_checks(const bool display_failure) { // set rc-checks to success if RC checks are disabled if (!check_enabled(ARMING_CHECK_RC)) { return true; } const RC_Channel *channels[] = { rover.channel_steer, rover.channel_throttle }; const char *channel_names[] = {"Steer", "Throttle"}; for (uint8_t i= 0 ; i < ARRAY_SIZE(channels); i++) { const RC_Channel *channel = channels[i]; const char *channel_name = channel_names[i]; // check if radio has been calibrated if (channel->get_radio_min() > RC_Channel::RC_CALIB_MIN_LIMIT_PWM) { check_failed(ARMING_CHECK_RC, display_failure, "%s radio min too high", channel_name); return false; } if (channel->get_radio_max() < RC_Channel::RC_CALIB_MAX_LIMIT_PWM) { check_failed(ARMING_CHECK_RC, display_failure, "%s radio max too low", channel_name); return false; } } return AP_Arming::rc_calibration_checks(display_failure); } // performs pre_arm gps related checks and returns true if passed bool AP_Arming_Rover::gps_checks(bool display_failure) { if (!rover.control_mode->requires_position() && !rover.control_mode->requires_velocity()) { // we don't care! return true; } // call parent gps checks if (!AP_Arming::gps_checks(display_failure)) { return false; } const AP_AHRS &ahrs = AP::ahrs(); // always check if inertial nav has started and is ready char failure_msg[50] = {}; if (!ahrs.pre_arm_check(true, failure_msg, sizeof(failure_msg))) { check_failed(display_failure, "AHRS: %s", failure_msg); return false; } // check for ekf failsafe if (rover.failsafe.ekf) { check_failed(display_failure, "EKF failsafe"); return false; } // ensure position esetimate is ok if (!rover.ekf_position_ok()) { // vehicle level position estimate checks check_failed(display_failure, "Need Position Estimate"); return false; } return true; } bool AP_Arming_Rover::pre_arm_checks(bool report) { if (armed) { // if we are already armed then skip the checks return true; } //are arming checks disabled? if (checks_to_perform == 0) { return mandatory_checks(report); } if (rover.g2.sailboat.sail_enabled() && !rover.g2.windvane.enabled()) { check_failed(report, "Sailing enabled with no WindVane"); return false; } return (AP_Arming::pre_arm_checks(report) & motor_checks(report) & oa_check(report) & parameter_checks(report) & mode_checks(report)); } bool AP_Arming_Rover::arm_checks(AP_Arming::Method method) { //are arming checks disabled? if (checks_to_perform == 0) { return true; } return AP_Arming::arm_checks(method); } void AP_Arming_Rover::update_soft_armed() { hal.util->set_soft_armed(is_armed() && hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED); AP::logger().set_vehicle_armed(hal.util->get_soft_armed()); } /* arm motors */ bool AP_Arming_Rover::arm(AP_Arming::Method method, const bool do_arming_checks) { if (!AP_Arming::arm(method, do_arming_checks)) { AP_Notify::events.arming_failed = true; return false; } // Set the SmartRTL home location. If activated, SmartRTL will ultimately try to land at this point rover.g2.smart_rtl.set_home(true); // initialize simple mode heading rover.mode_simple.init_heading(); // save home heading for use in sail vehicles rover.g2.windvane.record_home_heading(); update_soft_armed(); gcs().send_text(MAV_SEVERITY_INFO, "Throttle armed"); return true; } /* disarm motors */ bool AP_Arming_Rover::disarm(const AP_Arming::Method method, bool do_disarm_checks) { if (!AP_Arming::disarm(method, do_disarm_checks)) { return false; } if (rover.control_mode != &rover.mode_auto) { // reset the mission on disarm if we are not in auto rover.mode_auto.mission.reset(); } update_soft_armed(); gcs().send_text(MAV_SEVERITY_INFO, "Throttle disarmed"); return true; } // check object avoidance has initialised correctly bool AP_Arming_Rover::oa_check(bool report) { char failure_msg[50] = {}; if (rover.g2.oa.pre_arm_check(failure_msg, ARRAY_SIZE(failure_msg))) { return true; } // display failure if (strlen(failure_msg) == 0) { check_failed(report, "Check Object Avoidance"); } else { check_failed(report, "%s", failure_msg); } return false; } // perform parameter checks bool AP_Arming_Rover::parameter_checks(bool report) { // success if parameter checks are disabled if (!check_enabled(ARMING_CHECK_PARAMETERS)) { return true; } // check waypoint speed is positive if (!is_positive(rover.g2.wp_nav.get_default_speed())) { check_failed(ARMING_CHECK_PARAMETERS, report, "WP_SPEED too low"); return false; } return true; } // check if arming allowed from this mode bool AP_Arming_Rover::mode_checks(bool report) { //display failure if arming in this mode is not allowed if (!rover.control_mode->allows_arming()) { check_failed(report, "Mode not armable"); return false; } return true; } // check motors are ready bool AP_Arming_Rover::motor_checks(bool report) { bool ret = rover.g2.motors.pre_arm_check(report); #if HAL_TORQEEDO_ENABLED char failure_msg[50] = {}; AP_Torqeedo *torqeedo = AP_Torqeedo::get_singleton(); if (torqeedo != nullptr) { if (!torqeedo->pre_arm_checks(failure_msg, ARRAY_SIZE(failure_msg))) { check_failed(report, "Torqeedo: %s", failure_msg); ret = false; } } #endif return ret; }