/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Balance Bot simulator class */ #include "SIM_BalanceBot.h" #include extern const AP_HAL::HAL& hal; namespace SITL { BalanceBot::BalanceBot(const char *frame_str) : Aircraft(frame_str), skid_turn_rate(0.15708) // meters/sec { dcm.from_euler(0,0,0); // initial yaw, pitch and roll in radians lock_step_scheduled = true; printf("Balance Bot Simulation Started\n"); } /* return yaw rate in degrees/second given steering_angle */ float BalanceBot::calc_yaw_rate(float steering) const { float wheel_base_length = 0.15f; return steering * degrees( skid_turn_rate/wheel_base_length ); } /* update the Balance Bot simulation by one time step */ /* * The balance bot is physically modeled as an inverted pendulum(cuboid) on wheels * Further details on the equations used can be found here: * 1) http://robotics.ee.uwa.edu.au/theses/2003-Balance-Ooi.pdf page 33 onwards * 2) http://journals.sagepub.com/doi/pdf/10.5772/63933 */ void BalanceBot::update(const struct sitl_input &input) { // pendulum/chassis constants const float m_p = 3.0f; //pendulum mass(kg) // const float width = 0.0650f; //width(m) // const float height = 0.240f; //height(m) const float l = 0.10f; //height of center of mass from base(m) const float i_p = 0.01250f; //Moment of inertia about pitch axis(SI units) // wheel constants const float r_w = 0.05f; //wheel radius(m) const float m_w = 0.1130f; //wheel mass(kg) const float i_w = 0.00015480f; // moment of inertia of wheel(SI units) // motor constants const float R = 3.0f; //Winding resistance(ohm) const float k_e = 0.240f; //back-emf constant(SI units) const float k_t = 0.240f; //torque constant(SI units) const float v_max = 12.0f; //max input voltage(V) const float gear_ratio = 50.0f; // balance bot uses skid steering const float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f); const float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f); const float steering = motor1 - motor2; const float throttle = 0.5 * (motor1 + motor2); // motor input voltage: (throttle/max_throttle)*v_max const float v = throttle*v_max; // how much time has passed? const float delta_time = frame_time_us * 1.0e-6f; // yaw rate in degrees/s const float yaw_rate = calc_yaw_rate(steering); // obtain roll, pitch, yaw from dcm float r, p, y; dcm.to_euler(&r, &p, &y); float theta = p; //radians float ang_vel = gyro.y; //radians/s if (!hal.util->get_soft_armed()) { // simulated fingers uprighting the vehicle const float p_gain = 200; const float pitch_response = -sin(p) * p_gain * delta_time; ang_vel += pitch_response; } // t1,t2,t3 are terms in the equation to find vehicle frame x acceleration const float t1 = ((2.0f*gear_ratio*k_t*v/(R*r_w)) - (2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w*r_w)) - (m_p*l*ang_vel*ang_vel*sin(theta))) * (i_p + m_p*l*l); const float t2 = -m_p*l*cos(theta)*((2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*gear_ratio*k_t*v/(R)) + (m_p*GRAVITY_MSS*l*sin(theta))); const float t3 = ( ((2.0f*m_w + 2.0f*i_w/(r_w*r_w) + m_p) * (i_p + m_p*l*l)) - (m_p*m_p*l*l*cos(theta)*cos(theta)) ); //vehicle frame x acceleration const float accel_vf_x = (t1-t2)/t3; const float angular_accel_bf_y = ((2.0f*gear_ratio*k_t*k_e*velocity_vf_x/(R*r_w)) - (2.0f*gear_ratio*k_t*v/(R)) + m_p*l*accel_vf_x*cos(theta) + m_p*GRAVITY_MSS*l*sin(theta)) / (i_p + m_p*l*l); // accel in body frame due to motor accel_body = Vector3f(accel_vf_x*cos(theta), 0, -accel_vf_x*sin(theta)); // update theta and angular velocity ang_vel += angular_accel_bf_y * delta_time; theta += ang_vel * delta_time; theta = fmod(theta, radians(360)); gyro = Vector3f(0, ang_vel, radians(yaw_rate)); // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); // add in accel due to direction change accel_body.y += radians(yaw_rate) * velocity_vf_x; // update x velocity in vehicle frame velocity_vf_x += accel_vf_x * delta_time; // now in earth frame Vector3f accel_earth = dcm * accel_body; accel_earth += Vector3f(0, 0, GRAVITY_MSS); // we are on the ground, so our vertical accel is zero accel_earth.z = 0; if (!hal.util->get_soft_armed() && p < radians(2)) { // reset to vertical when not armed for faster testing accel_earth.zero(); velocity_ef.zero(); dcm.identity(); gyro.zero(); velocity_vf_x =0; } // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body += dcm.transposed() * (Vector3f(0, 0, -GRAVITY_MSS)); // new velocity vector velocity_ef += accel_earth * delta_time; // new position vector position += (velocity_ef * delta_time).todouble(); // neglect roll dcm.to_euler(&r, &p, &y); dcm.from_euler(0.0f, p, y); use_smoothing = true; // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); } }// namespace SITL