/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* driver for ST VL53L0X lidar Many thanks to Pololu, https://github.com/pololu/vl53l0x-arduino and the ST example code */ #include "AP_RangeFinder_VL53L0X.h" #include #include #include #include extern const AP_HAL::HAL& hal; enum regAddr { SYSRANGE_START = 0x00, SYSTEM_THRESH_HIGH = 0x0C, SYSTEM_THRESH_LOW = 0x0E, SYSTEM_SEQUENCE_CONFIG = 0x01, SYSTEM_RANGE_CONFIG = 0x09, SYSTEM_INTERMEASUREMENT_PERIOD = 0x04, SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A, GPIO_HV_MUX_ACTIVE_HIGH = 0x84, SYSTEM_INTERRUPT_CLEAR = 0x0B, RESULT_INTERRUPT_STATUS = 0x13, RESULT_RANGE_STATUS = 0x14, RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC, RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0, RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0, RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4, RESULT_PEAK_SIGNAL_RATE_REF = 0xB6, ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28, I2C_SLAVE_DEVICE_ADDRESS = 0x8A, MSRC_CONFIG_CONTROL = 0x60, PRE_RANGE_CONFIG_MIN_SNR = 0x27, PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56, PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57, PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64, FINAL_RANGE_CONFIG_MIN_SNR = 0x67, FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47, FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48, FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44, PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61, PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62, PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50, PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51, PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52, SYSTEM_HISTOGRAM_BIN = 0x81, HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33, HISTOGRAM_CONFIG_READOUT_CTRL = 0x55, FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70, FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71, FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72, CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20, MSRC_CONFIG_TIMEOUT_MACROP = 0x46, SOFT_RESET_GO2_SOFT_RESET_N = 0xBF, IDENTIFICATION_MODEL_ID = 0xC0, IDENTIFICATION_REVISION_ID = 0xC2, OSC_CALIBRATE_VAL = 0xF8, GLOBAL_CONFIG_VCSEL_WIDTH = 0x32, GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0, GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1, GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2, GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3, GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4, GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5, GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6, DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E, DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F, POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80, VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89, ALGO_PHASECAL_LIM = 0x30, ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30, }; // tuning register settings const AP_RangeFinder_VL53L0X::RegData AP_RangeFinder_VL53L0X::tuning_data[] = { { 0xFF, 0x01 }, { 0x00, 0x00 }, { 0xFF, 0x00 }, { 0x09, 0x00 }, { 0x10, 0x00 }, { 0x11, 0x00 }, { 0x24, 0x01 }, { 0x25, 0xFF }, { 0x75, 0x00 }, { 0xFF, 0x01 }, { 0x4E, 0x2C }, { 0x48, 0x00 }, { 0x30, 0x20 }, { 0xFF, 0x00 }, { 0x30, 0x09 }, { 0x54, 0x00 }, { 0x31, 0x04 }, { 0x32, 0x03 }, { 0x40, 0x83 }, { 0x46, 0x25 }, { 0x60, 0x00 }, { 0x27, 0x00 }, { 0x50, 0x06 }, { 0x51, 0x00 }, { 0x52, 0x96 }, { 0x56, 0x08 }, { 0x57, 0x30 }, { 0x61, 0x00 }, { 0x62, 0x00 }, { 0x64, 0x00 }, { 0x65, 0x00 }, { 0x66, 0xA0 }, { 0xFF, 0x01 }, { 0x22, 0x32 }, { 0x47, 0x14 }, { 0x49, 0xFF }, { 0x4A, 0x00 }, { 0xFF, 0x00 }, { 0x7A, 0x0A }, { 0x7B, 0x00 }, { 0x78, 0x21 }, { 0xFF, 0x01 }, { 0x23, 0x34 }, { 0x42, 0x00 }, { 0x44, 0xFF }, { 0x45, 0x26 }, { 0x46, 0x05 }, { 0x40, 0x40 }, { 0x0E, 0x06 }, { 0x20, 0x1A }, { 0x43, 0x40 }, { 0xFF, 0x00 }, { 0x34, 0x03 }, { 0x35, 0x44 }, { 0xFF, 0x01 }, { 0x31, 0x04 }, { 0x4B, 0x09 }, { 0x4C, 0x05 }, { 0x4D, 0x04 }, { 0xFF, 0x00 }, { 0x44, 0x00 }, { 0x45, 0x20 }, { 0x47, 0x08 }, { 0x48, 0x28 }, { 0x67, 0x00 }, { 0x70, 0x04 }, { 0x71, 0x01 }, { 0x72, 0xFE }, { 0x76, 0x00 }, { 0x77, 0x00 }, { 0xFF, 0x01 }, { 0x0D, 0x01 }, { 0xFF, 0x00 }, { 0x80, 0x01 }, { 0x01, 0xF8 }, { 0xFF, 0x01 }, { 0x8E, 0x01 }, { 0x00, 0x01 }, { 0xFF, 0x00 }, { 0x80, 0x00 }, }; /* The constructor also initializes the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_VL53L0X::AP_RangeFinder_VL53L0X(RangeFinder::RangeFinder_State &_state, AP_HAL::OwnPtr _dev) : AP_RangeFinder_Backend(_state) , dev(std::move(_dev)) {} /* detect if a VL53L0X rangefinder is connected. We'll detect by trying to take a reading on I2C. If we get a result the sensor is there. */ AP_RangeFinder_Backend *AP_RangeFinder_VL53L0X::detect(RangeFinder::RangeFinder_State &_state, AP_HAL::OwnPtr dev) { if(!dev){ return nullptr; } AP_RangeFinder_VL53L0X *sensor = new AP_RangeFinder_VL53L0X(_state, std::move(dev)); if (!sensor) { delete sensor; return nullptr; } sensor->dev->get_semaphore()->take_blocking(); if (!sensor->check_id() || !sensor->init()) { sensor->dev->get_semaphore()->give(); delete sensor; return nullptr; } sensor->dev->get_semaphore()->give(); return sensor; } // check sensor ID registers bool AP_RangeFinder_VL53L0X::check_id(void) { uint8_t v1, v2; if (!dev->read_registers(0xC0, &v1, 1) || !dev->read_registers(0xC1, &v2, 1) || v1 != 0xEE || v2 != 0xAA) { return false; } printf("Detected VL53L0X on bus 0x%x\n", dev->get_bus_id()); return true; } // Get reference SPAD (single photon avalanche diode) count and type // based on VL53L0X_get_info_from_device(), // but only gets reference SPAD count and type bool AP_RangeFinder_VL53L0X::get_SPAD_info(uint8_t * count, bool *type_is_aperture) { uint8_t tmp; write_register(0x80, 0x01); write_register(0xFF, 0x01); write_register(0x00, 0x00); write_register(0xFF, 0x06); write_register(0x83, read_register(0x83) | 0x04); write_register(0xFF, 0x07); write_register(0x81, 0x01); write_register(0x80, 0x01); write_register(0x94, 0x6b); write_register(0x83, 0x00); uint8_t tries = 50; while (read_register(0x83) == 0x00) { tries--; if (tries == 0) { return false; } hal.scheduler->delay(1); } write_register(0x83, 0x01); tmp = read_register(0x92); *count = tmp & 0x7f; *type_is_aperture = (tmp >> 7) & 0x01; write_register(0x81, 0x00); write_register(0xFF, 0x06); write_register(0x83, read_register(0x83) & ~0x04); write_register(0xFF, 0x01); write_register(0x00, 0x01); write_register(0xFF, 0x00); write_register(0x80, 0x00); return true; } // Get sequence step enables // based on VL53L0X_GetSequenceStepEnables() void AP_RangeFinder_VL53L0X::getSequenceStepEnables(SequenceStepEnables * enables) { uint8_t sequence_config = read_register(SYSTEM_SEQUENCE_CONFIG); enables->tcc = (sequence_config >> 4) & 0x1; enables->dss = (sequence_config >> 3) & 0x1; enables->msrc = (sequence_config >> 2) & 0x1; enables->pre_range = (sequence_config >> 6) & 0x1; enables->final_range = (sequence_config >> 7) & 0x1; } // Get the VCSEL pulse period in PCLKs for the given period type. // based on VL53L0X_get_vcsel_pulse_period() uint8_t AP_RangeFinder_VL53L0X::getVcselPulsePeriod(vcselPeriodType _type) { #define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1) if (_type == VcselPeriodPreRange) { return decodeVcselPeriod(read_register(PRE_RANGE_CONFIG_VCSEL_PERIOD)); } else if (_type == VcselPeriodFinalRange) { return decodeVcselPeriod(read_register(FINAL_RANGE_CONFIG_VCSEL_PERIOD)); } return 255; } // Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs // based on VL53L0X_calc_timeout_us() uint32_t AP_RangeFinder_VL53L0X::timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks) { #define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000) uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks); return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000; } // Decode sequence step timeout in MCLKs from register value // based on VL53L0X_decode_timeout() // Note: the original function returned a uint32_t, but the return value is // always stored in a uint16_t. uint16_t AP_RangeFinder_VL53L0X::decodeTimeout(uint16_t reg_val) { // format: "(LSByte * 2^MSByte) + 1" return (uint16_t)((reg_val & 0x00FF) << (uint16_t)((reg_val & 0xFF00) >> 8)) + 1; } // Get sequence step timeouts // based on get_sequence_step_timeout(), // but gets all timeouts instead of just the requested one, and also stores // intermediate values void AP_RangeFinder_VL53L0X::getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts) { timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange); timeouts->msrc_dss_tcc_mclks = read_register(MSRC_CONFIG_TIMEOUT_MACROP) + 1; timeouts->msrc_dss_tcc_us = timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks, timeouts->pre_range_vcsel_period_pclks); timeouts->pre_range_mclks = decodeTimeout(read_register16(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI)); timeouts->pre_range_us = timeoutMclksToMicroseconds(timeouts->pre_range_mclks, timeouts->pre_range_vcsel_period_pclks); timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange); timeouts->final_range_mclks = decodeTimeout(read_register16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI)); if (enables->pre_range) { timeouts->final_range_mclks -= timeouts->pre_range_mclks; } timeouts->final_range_us = timeoutMclksToMicroseconds(timeouts->final_range_mclks, timeouts->final_range_vcsel_period_pclks); } // Get the measurement timing budget in microseconds // based on VL53L0X_get_measurement_timing_budget_micro_seconds() // in us uint32_t AP_RangeFinder_VL53L0X::getMeasurementTimingBudget(void) { SequenceStepEnables enables; SequenceStepTimeouts timeouts; uint16_t const StartOverhead = 1910; // note that this is different than the value in set_ uint16_t const EndOverhead = 960; uint16_t const MsrcOverhead = 660; uint16_t const TccOverhead = 590; uint16_t const DssOverhead = 690; uint16_t const PreRangeOverhead = 660; uint16_t const FinalRangeOverhead = 550; // "Start and end overhead times always present" uint32_t budget_us = StartOverhead + EndOverhead; getSequenceStepEnables(&enables); getSequenceStepTimeouts(&enables, &timeouts); if (enables.tcc) { budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead); } if (enables.dss) { budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead); } else if (enables.msrc) { budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead); } if (enables.pre_range) { budget_us += (timeouts.pre_range_us + PreRangeOverhead); } if (enables.final_range) { budget_us += (timeouts.final_range_us + FinalRangeOverhead); } measurement_timing_budget_us = budget_us; // store for internal reuse return budget_us; } // Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs // based on VL53L0X_calc_timeout_mclks() uint32_t AP_RangeFinder_VL53L0X::timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks) { uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks); return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns); } // Encode sequence step timeout register value from timeout in MCLKs // based on VL53L0X_encode_timeout() // Note: the original function took a uint16_t, but the argument passed to it // is always a uint16_t. uint16_t AP_RangeFinder_VL53L0X::encodeTimeout(uint16_t timeout_mclks) { // format: "(LSByte * 2^MSByte) + 1" uint32_t ls_byte = 0; uint16_t ms_byte = 0; if (timeout_mclks > 0) { ls_byte = timeout_mclks - 1; while ((ls_byte & 0xFFFFFF00) > 0) { ls_byte >>= 1; ms_byte++; } return (ms_byte << 8) | (ls_byte & 0xFF); } return 0; } // Set the measurement timing budget in microseconds, which is the time allowed // for one measurement; the ST API and this library take care of splitting the // timing budget among the sub-steps in the ranging sequence. A longer timing // budget allows for more accurate measurements. Increasing the budget by a // factor of N decreases the range measurement standard deviation by a factor of // sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms. // based on VL53L0X_set_measurement_timing_budget_micro_seconds() bool AP_RangeFinder_VL53L0X::setMeasurementTimingBudget(uint32_t budget_us) { SequenceStepEnables enables; SequenceStepTimeouts timeouts; uint16_t const StartOverhead = 1320; // note that this is different than the value in get_ uint16_t const EndOverhead = 960; uint16_t const MsrcOverhead = 660; uint16_t const TccOverhead = 590; uint16_t const DssOverhead = 690; uint16_t const PreRangeOverhead = 660; uint16_t const FinalRangeOverhead = 550; uint32_t const MinTimingBudget = 20000; if (budget_us < MinTimingBudget) { return false; } uint32_t used_budget_us = StartOverhead + EndOverhead; getSequenceStepEnables(&enables); getSequenceStepTimeouts(&enables, &timeouts); if (enables.tcc) { used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead); } if (enables.dss) { used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead); } else if (enables.msrc) { used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead); } if (enables.pre_range) { used_budget_us += (timeouts.pre_range_us + PreRangeOverhead); } if (enables.final_range) { used_budget_us += FinalRangeOverhead; // "Note that the final range timeout is determined by the timing // budget and the sum of all other timeouts within the sequence. // If there is no room for the final range timeout, then an error // will be set. Otherwise the remaining time will be applied to // the final range." if (used_budget_us > budget_us) { // "Requested timeout too big." return false; } uint32_t final_range_timeout_us = budget_us - used_budget_us; // set_sequence_step_timeout() begin // (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) // "For the final range timeout, the pre-range timeout // must be added. To do this both final and pre-range // timeouts must be expressed in macro periods MClks // because they have different vcsel periods." uint16_t final_range_timeout_mclks = timeoutMicrosecondsToMclks(final_range_timeout_us, timeouts.final_range_vcsel_period_pclks); if (enables.pre_range) { final_range_timeout_mclks += timeouts.pre_range_mclks; } write_register16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, encodeTimeout(final_range_timeout_mclks)); // set_sequence_step_timeout() end measurement_timing_budget_us = budget_us; // store for internal reuse } return true; } bool AP_RangeFinder_VL53L0X::init() { // setup for 2.8V operation write_register(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, read_register(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // "Set I2C standard mode" write_register(0x88, 0x00); write_register(0x80, 0x01); write_register(0xFF, 0x01); write_register(0x00, 0x00); stop_variable = read_register(0x91); write_register(0x00, 0x01); write_register(0xFF, 0x00); write_register(0x80, 0x00); // disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks write_register(MSRC_CONFIG_CONTROL, read_register(MSRC_CONFIG_CONTROL) | 0x12); // set final range signal rate limit to 0.25 MCPS (million counts per second) write_register16(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, uint16_t(0.25 * (1 << 7))); write_register(SYSTEM_SEQUENCE_CONFIG, 0xFF); uint8_t spad_count; bool spad_type_is_aperture; if (!get_SPAD_info(&spad_count, &spad_type_is_aperture)) { printf("VL53L0X: Failed to get SPAD info\n"); return false; } // The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in // the API, but the same data seems to be more easily readable from // GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there uint8_t ref_spad_map[6]; if (!dev->read_registers(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6)) { printf("VL53L0X: Failed to read SPAD map\n"); return false; } // -- VL53L0X_set_reference_spads() begin (assume NVM values are valid) write_register(0xFF, 0x01); write_register(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00); write_register(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C); write_register(0xFF, 0x00); write_register(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4); uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad uint8_t spads_enabled = 0; for (uint8_t i = 0; i < 48; i++) { if (i < first_spad_to_enable || spads_enabled == spad_count) { // This bit is lower than the first one that should be enabled, or // (reference_spad_count) bits have already been enabled, so zero this bit ref_spad_map[i / 8] &= ~(1 << (i % 8)); } else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1) { spads_enabled++; } } uint8_t reg_spad_map[7] = { GLOBAL_CONFIG_SPAD_ENABLES_REF_0, }; memcpy(®_spad_map[1], ref_spad_map, 6); dev->transfer(reg_spad_map, 7, nullptr, 0); for (uint16_t i=0; iregister_periodic_callback(33000, FUNCTOR_BIND_MEMBER(&AP_RangeFinder_VL53L0X::timer, void)); return true; } // based on VL53L0X_perform_single_ref_calibration() bool AP_RangeFinder_VL53L0X::performSingleRefCalibration(uint8_t vhv_init_byte) { write_register(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP uint8_t tries = 200; while ((read_register(RESULT_INTERRUPT_STATUS) & 0x07) == 0) { if (tries-- == 0) { return false; } hal.scheduler->delay(1); } write_register(SYSTEM_INTERRUPT_CLEAR, 0x01); write_register(SYSRANGE_START, 0x00); return true; } // Start continuous ranging measurements void AP_RangeFinder_VL53L0X::start_continuous(void) { write_register(0x80, 0x01); write_register(0xFF, 0x01); write_register(0x00, 0x00); write_register(0x91, stop_variable); write_register(0x00, 0x01); write_register(0xFF, 0x00); write_register(0x80, 0x00); // continuous back-to-back mode write_register(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK start_ms = AP_HAL::millis(); } // read - return last value measured by sensor bool AP_RangeFinder_VL53L0X::get_reading(uint16_t &reading_mm) { if ((read_register(RESULT_INTERRUPT_STATUS) & 0x07) == 0) { if (AP_HAL::millis() - start_ms > 200) { start_continuous(); } return false; } // assumptions: Linearity Corrective Gain is 1000 (default); // fractional ranging is not enabled reading_mm = read_register16(RESULT_RANGE_STATUS + 10); write_register(SYSTEM_INTERRUPT_CLEAR, 0x01); return true; } void AP_RangeFinder_VL53L0X::write_register16(uint8_t reg, uint16_t value) { uint8_t b[3] = { reg, uint8_t(value>>8), uint8_t(value) }; dev->transfer(b, 3, nullptr, 0); } void AP_RangeFinder_VL53L0X::write_register(uint8_t reg, uint8_t value) { dev->write_register(reg, value); } uint8_t AP_RangeFinder_VL53L0X::read_register(uint8_t reg) { uint8_t v = 0; dev->read_registers(reg, &v, 1); return v; } uint16_t AP_RangeFinder_VL53L0X::read_register16(uint8_t reg) { uint16_t v = 0; dev->transfer(®, 1, (uint8_t *)&v, 2); return be16toh(v); } /* update the state of the sensor */ void AP_RangeFinder_VL53L0X::update(void) { if (counter > 0) { state.distance_cm = sum_mm / (10*counter); sum_mm = 0; counter = 0; update_status(); } else { set_status(RangeFinder::RangeFinder_NoData); } } void AP_RangeFinder_VL53L0X::timer(void) { uint16_t range_mm; if (get_reading(range_mm) && range_mm < 8000) { sum_mm += range_mm; counter++; } }