/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #if FRAME_CONFIG == QUADP_FRAME void output_motors_armed() { int out_min = g.rc_3.radio_min; // Throttle is 0 to 1000 only g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000); if(g.rc_3.servo_out > 0) out_min = g.rc_3.radio_min + 90; g.rc_1.calc_pwm(); g.rc_2.calc_pwm(); g.rc_3.calc_pwm(); g.rc_4.calc_pwm(); // left motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out; // right motor_out[CH_2] = g.rc_3.radio_out + g.rc_1.pwm_out; // front motor_out[CH_3] = g.rc_3.radio_out + g.rc_2.pwm_out; // back motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out; // Yaw input motor_out[CH_1] += g.rc_4.pwm_out; // CCW motor_out[CH_2] += g.rc_4.pwm_out; // CCW motor_out[CH_3] -= g.rc_4.pwm_out; // CW motor_out[CH_4] -= g.rc_4.pwm_out; // CW // limit output so motors don't stop motor_out[CH_1] = max(motor_out[CH_1], out_min); motor_out[CH_2] = max(motor_out[CH_2], out_min); motor_out[CH_3] = max(motor_out[CH_3], out_min); motor_out[CH_4] = max(motor_out[CH_4], out_min); // Send commands to motors if(g.rc_3.servo_out > 0){ APM_RC.OutputCh(CH_1, motor_out[CH_1]); APM_RC.OutputCh(CH_2, motor_out[CH_2]); APM_RC.OutputCh(CH_3, motor_out[CH_3]); APM_RC.OutputCh(CH_4, motor_out[CH_4]); // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); }else{ APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); } } void output_motors_disarmed() { if(g.rc_3.control_in > 0){ // we have pushed up the throttle // remove safety motor_auto_armed = true; } // fill the motor_out[] array for HIL use for (unsigned char i = 0; i < 8; i++) { motor_out[i] = g.rc_3.radio_min; } // Send commands to motors APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); } void output_motor_test() { APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_3, g.rc_3.radio_min + 50); delay(1000); APM_RC.OutputCh(CH_3, g.rc_3.radio_min); APM_RC.OutputCh(CH_1, g.rc_3.radio_min + 50); delay(1000); APM_RC.OutputCh(CH_1, g.rc_3.radio_min); APM_RC.OutputCh(CH_4, g.rc_3.radio_min + 50); delay(1000); APM_RC.OutputCh(CH_4, g.rc_3.radio_min); APM_RC.OutputCh(CH_2, g.rc_3.radio_min + 50); delay(1000); } #endif