#include "GCS.h" #include #include #include #include #include extern const AP_HAL::HAL& hal; void GCS::get_sensor_status_flags(uint32_t &present, uint32_t &enabled, uint32_t &health) { update_sensor_status_flags(); present = control_sensors_present; enabled = control_sensors_enabled; health = control_sensors_health; } MissionItemProtocol_Waypoints *GCS::_missionitemprotocol_waypoints; MissionItemProtocol_Rally *GCS::_missionitemprotocol_rally; const MAV_MISSION_TYPE GCS_MAVLINK::supported_mission_types[] = { MAV_MISSION_TYPE_MISSION, MAV_MISSION_TYPE_RALLY, }; /* send a text message to all GCS */ void GCS::send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list) { char text[MAVLINK_MSG_STATUSTEXT_FIELD_TEXT_LEN+1]; hal.util->vsnprintf(text, sizeof(text), fmt, arg_list); send_statustext(severity, GCS_MAVLINK::active_channel_mask() | GCS_MAVLINK::streaming_channel_mask(), text); } void GCS::send_text(MAV_SEVERITY severity, const char *fmt, ...) { va_list arg_list; va_start(arg_list, fmt); send_textv(severity, fmt, arg_list); va_end(arg_list); } void GCS::send_to_active_channels(uint32_t msgid, const char *pkt) { const mavlink_msg_entry_t *entry = mavlink_get_msg_entry(msgid); if (entry == nullptr) { return; } for (uint8_t i=0; imax_msg_len + c.packet_overhead() > c.get_uart()->txspace()) { // no room on this channel continue; } c.send_message(pkt, entry); } } void GCS::send_named_float(const char *name, float value) const { mavlink_named_value_float_t packet; packet.time_boot_ms = AP_HAL::millis(); packet.value = value; memcpy(packet.name, name, MIN(strlen(name), (uint8_t)MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN)); gcs().send_to_active_channels(MAVLINK_MSG_ID_NAMED_VALUE_FLOAT, (const char *)&packet); } /* install an alternative protocol handler. This allows another protocol to take over the link if MAVLink goes idle. It is used to allow for the AP_BLHeli pass-thru protocols to run on hal.uartA */ bool GCS::install_alternative_protocol(mavlink_channel_t c, GCS_MAVLINK::protocol_handler_fn_t handler) { if (c >= num_gcs()) { return false; } if (chan(c).alternative.handler && handler) { // already have one installed - we may need to add support for // multiple alternative handlers return false; } chan(c).alternative.handler = handler; return true; } void GCS::update_sensor_status_flags() { control_sensors_present = 0; control_sensors_enabled = 0; control_sensors_health = 0; AP_AHRS &ahrs = AP::ahrs(); const AP_InertialSensor &ins = AP::ins(); control_sensors_present |= MAV_SYS_STATUS_AHRS; control_sensors_enabled |= MAV_SYS_STATUS_AHRS; if (!ahrs.initialised() || ahrs.healthy()) { if (!ahrs.have_inertial_nav() || ins.accel_calibrated_ok_all()) { control_sensors_health |= MAV_SYS_STATUS_AHRS; } } const Compass &compass = AP::compass(); if (AP::compass().enabled()) { control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_MAG; } if (compass.enabled() && compass.healthy() && ahrs.use_compass()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG; } const AP_Baro &barometer = AP::baro(); control_sensors_present |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; if (barometer.all_healthy()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE; } const AP_BattMonitor &battery = AP::battery(); control_sensors_present |= MAV_SYS_STATUS_SENSOR_BATTERY; if (battery.num_instances() > 0) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY; } if (battery.healthy() && !battery.has_failsafed()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_BATTERY; } control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_GYRO; control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_ACCEL; if (!ins.calibrating()) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_ACCEL; control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_GYRO; if (ins.get_accel_health_all()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_ACCEL; } if (ins.get_gyro_health_all() && ins.gyro_calibrated_ok_all()) { control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_GYRO; } } const AP_Logger &logger = AP::logger(); if (logger.logging_present()) { // primary logging only (usually File) control_sensors_present |= MAV_SYS_STATUS_LOGGING; } if (logger.logging_enabled()) { control_sensors_enabled |= MAV_SYS_STATUS_LOGGING; } if (!logger.logging_failed()) { control_sensors_health |= MAV_SYS_STATUS_LOGGING; } // set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED) control_sensors_present |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; } control_sensors_health |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL if (ahrs.get_ekf_type() == 10) { // always show EKF type 10 as healthy. This prevents spurious error // messages in xplane and other simulators that use EKF type 10 control_sensors_health |= MAV_SYS_STATUS_AHRS | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_3D_GYRO; } #endif update_vehicle_sensor_status_flags(); } bool GCS::out_of_time() const { // while we are in the delay callback we are never out of time: if (hal.scheduler->in_delay_callback()) { return false; } // we always want to be able to send messages out while in the error loop: if (AP_BoardConfig::in_sensor_config_error()) { return false; } if (min_loop_time_remaining_for_message_send_us() <= AP::scheduler().time_available_usec()) { return false; } return true; }