#include <assert.h> #include <utility> #include <AP_Math/AP_Math.h> #include <AP_HAL/AP_HAL.h> #include "AP_Compass_LSM9DS1.h" #define LSM9DS1M_OFFSET_X_REG_L_M 0x05 #define LSM9DS1M_OFFSET_X_REG_H_M 0x06 #define LSM9DS1M_OFFSET_Y_REG_L_M 0x07 #define LSM9DS1M_OFFSET_Y_REG_H_M 0x08 #define LSM9DS1M_OFFSET_Z_REG_L_M 0x09 #define LSM9DS1M_OFFSET_Z_REG_H_M 0x0A #define LSM9DS1M_WHO_AM_I 0x0F #define WHO_AM_I_MAG 0x3D #define LSM9DS1M_CTRL_REG1_M 0x20 #define LSM9DS1M_TEMP_COMP (0x1 << 7) #define LSM9DS1M_XY_ULTRA_HIGH (0x3 << 5) #define LSM9DS1M_80HZ (0x7 << 2) #define LSM9DS1M_FAST_ODR (0x1 << 1) #define LSM9DS1M_CTRL_REG2_M 0x21 #define LSM9DS1M_FS_16G (0x3 << 5) #define LSM9DS1M_CTRL_REG3_M 0x22 #define LSM9DS1M_SPI_ENABLE (0x01 << 2) #define LSM9DS1M_CONTINUOUS_MODE 0x0 #define LSM9DS1M_CTRL_REG4_M 0x23 #define LSM9DS1M_Z_ULTRA_HIGH (0x3 << 2) #define LSM9DS1M_CTRL_REG5_M 0x24 #define LSM9DS1M_BDU (0x0 << 6) #define LSM9DS1M_STATUS_REG_M 0x27 #define LSM9DS1M_OUT_X_L_M 0x28 #define LSM9DS1M_OUT_X_H_M 0x29 #define LSM9DS1M_OUT_Y_L_M 0x2A #define LSM9DS1M_OUT_Y_H_M 0x2B #define LSM9DS1M_OUT_Z_L_M 0x2C #define LSM9DS1M_OUT_Z_H_M 0x2D #define LSM9DS1M_INT_CFG_M 0x30 #define LSM9DS1M_INT_SRC_M 0x31 #define LSM9DS1M_INT_THS_L_M 0x32 #define LSM9DS1M_INT_THS_H_M 0x33 struct PACKED sample_regs { uint8_t status; int16_t val[3]; }; extern const AP_HAL::HAL &hal; AP_Compass_LSM9DS1::AP_Compass_LSM9DS1(AP_HAL::OwnPtr<AP_HAL::Device> dev, enum Rotation rotation) : _dev(std::move(dev)) , _rotation(rotation) { } AP_Compass_Backend *AP_Compass_LSM9DS1::probe(AP_HAL::OwnPtr<AP_HAL::Device> dev, enum Rotation rotation) { if (!dev) { return nullptr; } AP_Compass_LSM9DS1 *sensor = new AP_Compass_LSM9DS1(std::move(dev), rotation); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } bool AP_Compass_LSM9DS1::init() { AP_HAL::Semaphore *bus_sem = _dev->get_semaphore(); if (!bus_sem) { hal.console->printf("LSM9DS1: Unable to get bus semaphore\n"); return false; } bus_sem->take_blocking(); if (!_check_id()) { hal.console->printf("LSM9DS1: Could not check id\n"); goto errout; } if (!_configure()) { hal.console->printf("LSM9DS1: Could not check id\n"); goto errout; } if (!_set_scale()) { hal.console->printf("LSM9DS1: Could not set scale\n"); goto errout; } //register compass instance _dev->set_device_type(DEVTYPE_LSM9DS1); if (!register_compass(_dev->get_bus_id(), _compass_instance)) { goto errout; } set_dev_id(_compass_instance, _dev->get_bus_id()); set_rotation(_compass_instance, _rotation); _dev->register_periodic_callback(10000, FUNCTOR_BIND_MEMBER(&AP_Compass_LSM9DS1::_update, void)); bus_sem->give(); return true; errout: bus_sem->give(); return false; } void AP_Compass_LSM9DS1::_dump_registers() { hal.console->printf("LSMDS1 registers\n"); for (uint8_t reg = LSM9DS1M_OFFSET_X_REG_L_M; reg <= LSM9DS1M_INT_THS_H_M; reg++) { uint8_t v = _register_read(reg); hal.console->printf("%02x:%02x ", (unsigned)reg, (unsigned)v); if ((reg - (LSM9DS1M_OFFSET_X_REG_L_M-1)) % 16 == 0) { hal.console->printf("\n"); } } hal.console->printf("\n"); } void AP_Compass_LSM9DS1::_update(void) { struct sample_regs regs; Vector3f raw_field; if (!_block_read(LSM9DS1M_STATUS_REG_M, (uint8_t *) ®s, sizeof(regs))) { return; } if (regs.status & 0x80) { return; } raw_field = Vector3f(regs.val[0], regs.val[1], regs.val[2]); if (is_zero(raw_field.x) && is_zero(raw_field.y) && is_zero(raw_field.z)) { return; } raw_field *= _scaling; accumulate_sample(raw_field, _compass_instance); } void AP_Compass_LSM9DS1::read() { drain_accumulated_samples(_compass_instance); } bool AP_Compass_LSM9DS1::_check_id(void) { // initially run the bus at low speed _dev->set_speed(AP_HAL::Device::SPEED_LOW); uint8_t value = _register_read(LSM9DS1M_WHO_AM_I); if (value != WHO_AM_I_MAG) { hal.console->printf("LSM9DS1: unexpected WHOAMI 0x%x\n", (unsigned)value); return false; } _dev->set_speed(AP_HAL::Device::SPEED_HIGH); return true; } bool AP_Compass_LSM9DS1::_configure(void) { _register_write(LSM9DS1M_CTRL_REG1_M, LSM9DS1M_TEMP_COMP | LSM9DS1M_XY_ULTRA_HIGH | LSM9DS1M_80HZ | LSM9DS1M_FAST_ODR); _register_write(LSM9DS1M_CTRL_REG2_M, LSM9DS1M_FS_16G); _register_write(LSM9DS1M_CTRL_REG3_M, LSM9DS1M_CONTINUOUS_MODE); _register_write(LSM9DS1M_CTRL_REG4_M, LSM9DS1M_Z_ULTRA_HIGH); _register_write(LSM9DS1M_CTRL_REG5_M, LSM9DS1M_BDU); return true; } bool AP_Compass_LSM9DS1::_set_scale(void) { static const uint8_t FS_M_MASK = 0xc; _register_modify(LSM9DS1M_CTRL_REG2_M, FS_M_MASK, LSM9DS1M_FS_16G); _scaling = 0.58f; return true; } uint8_t AP_Compass_LSM9DS1::_register_read(uint8_t reg) { uint8_t val = 0; /* set READ bit */ reg |= 0x80; _dev->read_registers(reg, &val, 1); return val; } bool AP_Compass_LSM9DS1::_block_read(uint8_t reg, uint8_t *buf, uint32_t size) { /* set !MS bit */ reg |= 0xc0; return _dev->read_registers(reg, buf, size); } void AP_Compass_LSM9DS1::_register_write(uint8_t reg, uint8_t val) { _dev->write_register(reg, val); } void AP_Compass_LSM9DS1::_register_modify(uint8_t reg, uint8_t clearbits, uint8_t setbits) { uint8_t val; val = _register_read(reg); val &= ~clearbits; val |= setbits; _register_write(reg, val); }