/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
* DataFlash_APM1.cpp - DataFlash log library for AT45DB161
* Code by Jordi Muñoz and Jose Julio. DIYDrones.com
* This code works only on ATMega2560. It uses Serial port 3 in SPI MSPI mdoe.
*
* Dataflash library for AT45DB161D flash memory
* Memory organization : 4096 pages of 512 bytes or 528 bytes
*
* Maximun write bandwidth : 512 bytes in 14ms
* This code is written so the master never has to wait to write the data on the eeprom
*
* Methods:
* Init() : Library initialization (SPI initialization)
* StartWrite(page) : Start a write session. page=start page.
* StartRead(page) : Start a read on (page)
* GetWritePage() : Returns the last page written to
* GetPage() : Returns the last page read
*
* Properties:
*
*/
#include
#include "DataFlash_APM2.h"
extern const AP_HAL::HAL& hal;
//#define ENABLE_FASTSERIAL_DEBUG
#ifdef ENABLE_FASTSERIAL_DEBUG
#define serialDebug(fmt, args...) do {hal.console->printf( __FUNCTION__ ":%d:" fmt "\n", __LINE__, ##args); } while(0)
#else
# define serialDebug(fmt, args...)
#endif
// flash size
#define DF_LAST_PAGE 4096
#define DF_RESET 31 // RESET (PC6)
// AT45DB161D Commands (from Datasheet)
#define DF_TRANSFER_PAGE_TO_BUFFER_1 0x53
#define DF_TRANSFER_PAGE_TO_BUFFER_2 0x55
#define DF_STATUS_REGISTER_READ 0xD7
#define DF_READ_MANUFACTURER_AND_DEVICE_ID 0x9F
#define DF_PAGE_READ 0xD2
#define DF_BUFFER_1_READ 0xD4
#define DF_BUFFER_2_READ 0xD6
#define DF_BUFFER_1_WRITE 0x84
#define DF_BUFFER_2_WRITE 0x87
#define DF_BUFFER_1_TO_PAGE_WITH_ERASE 0x83
#define DF_BUFFER_2_TO_PAGE_WITH_ERASE 0x86
#define DF_PAGE_ERASE 0x81
#define DF_BLOCK_ERASE 0x50
#define DF_SECTOR_ERASE 0x7C
#define DF_CHIP_ERASE_0 0xC7
#define DF_CHIP_ERASE_1 0x94
#define DF_CHIP_ERASE_2 0x80
#define DF_CHIP_ERASE_3 0x9A
/*
try to take a semaphore safely from both in a timer and outside
*/
bool DataFlash_APM1::_sem_take(uint8_t timeout)
{
if (hal.scheduler->in_timerprocess()) {
return _spi_sem->take_nonblocking();
}
return _spi_sem->take(timeout);
}
// Public Methods //////////////////////////////////////////////////////////////
void DataFlash_APM1::Init(const struct LogStructure *structure, uint8_t num_types)
{
DataFlash_Backend::Init(structure, num_types);
// init to zero
df_NumPages = 0;
hal.gpio->pinMode(DF_RESET,HAL_GPIO_OUTPUT);
// Reset the chip
hal.gpio->write(DF_RESET,0);
hal.scheduler->delay(1);
hal.gpio->write(DF_RESET,1);
_spi = hal.spi->device(AP_HAL::SPIDevice_Dataflash);
if (_spi == NULL) {
hal.scheduler->panic(
"PANIC: DataFlash SPIDeviceDriver not found");
return; /* never reached */
}
_spi_sem = _spi->get_semaphore();
if (_spi_sem == NULL) {
hal.scheduler->panic(
"PANIC: DataFlash SPIDeviceDriver semaphore is null");
return; /* never reached */
}
// get page size: 512 or 528 (by default: 528)
df_PageSize = PageSize();
// the last page is reserved for config information
df_NumPages = DF_LAST_PAGE - 1;
}
// This function is mainly to test the device
void DataFlash_APM1::ReadManufacturerID()
{
if (!_sem_take(5))
return;
// activate dataflash command decoder
_spi->cs_assert();
// Read manufacturer and ID command...
_spi->transfer(DF_READ_MANUFACTURER_AND_DEVICE_ID);
df_manufacturer = _spi->transfer(0xff);
df_device = _spi->transfer(0xff);
df_device = (df_device << 8) | _spi->transfer(0xff);
_spi->transfer(0xff);
// release SPI bus for use by other sensors
_spi->cs_release();
_spi_sem->give();
}
// This function return 1 if Card is inserted on SD slot
bool DataFlash_APM1::CardInserted()
{
return true;
}
// Read the status register
// Assumes _spi_sem handled by caller
uint8_t DataFlash_APM1::ReadStatusReg()
{
uint8_t tmp;
// activate dataflash command decoder
_spi->cs_assert();
// Read status command
_spi->transfer(DF_STATUS_REGISTER_READ);
tmp = _spi->transfer(0x00); // We only want to extract the READY/BUSY bit
// release SPI bus for use by other sensors
_spi->cs_release();
return tmp;
}
// Read the status of the DataFlash
// Assumes _spi_sem handled by caller.
inline
uint8_t DataFlash_APM1::ReadStatus()
{
return(ReadStatusReg()&0x80); // We only want to extract the READY/BUSY bit
}
inline
uint16_t DataFlash_APM1::PageSize()
{
if (!_sem_take(5))
return 0;
uint16_t ret = 528-((ReadStatusReg()&0x01) << 4); // if first bit 1 trhen 512 else 528 bytes
_spi_sem->give();
return ret;
}
// Wait until DataFlash is in ready state...
// Assumes _spi_sem handled by caller.
void DataFlash_APM1::WaitReady()
{
while(!ReadStatus()) ;
}
void DataFlash_APM1::PageToBuffer(uint8_t BufferNum, uint16_t PageAdr)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
uint8_t cmd[4];
cmd[0] = BufferNum?DF_TRANSFER_PAGE_TO_BUFFER_2:DF_TRANSFER_PAGE_TO_BUFFER_1;
if(df_PageSize==512) {
cmd[1] = (uint8_t)(PageAdr >> 7);
cmd[2] = (uint8_t)(PageAdr << 1);
}else{
cmd[1] = (uint8_t)(PageAdr >> 6);
cmd[2] = (uint8_t)(PageAdr << 2);
}
cmd[3] = 0;
_spi->transfer(cmd, sizeof(cmd));
//initiate the transfer
_spi->cs_release();
while(!ReadStatus()) ; //monitor the status register, wait until busy-flag is high
_spi_sem->give();
}
void DataFlash_APM1::BufferToPage (uint8_t BufferNum, uint16_t PageAdr, uint8_t wait)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
uint8_t cmd[4];
cmd[0] = BufferNum?DF_BUFFER_2_TO_PAGE_WITH_ERASE:DF_BUFFER_1_TO_PAGE_WITH_ERASE;
if(df_PageSize==512) {
cmd[1] = (uint8_t)(PageAdr >> 7);
cmd[2] = (uint8_t)(PageAdr << 1);
}else{
cmd[1] = (uint8_t)(PageAdr >> 6);
cmd[2] = (uint8_t)(PageAdr << 2);
}
cmd[3] = 0;
_spi->transfer(cmd, sizeof(cmd));
//initiate the transfer
_spi->cs_release();
// Check if we need to wait to write the buffer to memory or we can continue...
if (wait)
while(!ReadStatus()) ; //monitor the status register, wait until busy-flag is high
_spi_sem->give();
}
void DataFlash_APM1::BlockWrite (uint8_t BufferNum, uint16_t IntPageAdr,
const void *pHeader, uint8_t hdr_size,
const void *pBuffer, uint16_t size)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
uint8_t cmd[4];
cmd[0] = BufferNum?DF_BUFFER_2_WRITE:DF_BUFFER_1_WRITE;
cmd[1] = 0;
cmd[2] = (uint8_t)(IntPageAdr>>8);
cmd[3] = (uint8_t)(IntPageAdr);
_spi->transfer(cmd, sizeof(cmd));
// transfer header, if any
if (hdr_size != 0) {
_spi->transfer((const uint8_t *)pHeader, hdr_size);
}
// transfer data
_spi->transfer((const uint8_t *)pBuffer, size);
// release SPI bus for use by other sensors
_spi->cs_release();
_spi_sem->give();
}
bool DataFlash_APM1::BlockRead(uint8_t BufferNum, uint16_t IntPageAdr, void *pBuffer, uint16_t size)
{
if (!_sem_take(1))
return false;
// activate dataflash command decoder
_spi->cs_assert();
uint8_t cmd[5];
cmd[0] = BufferNum?DF_BUFFER_2_READ:DF_BUFFER_1_READ;
cmd[1] = 0;
cmd[2] = (uint8_t)(IntPageAdr>>8);
cmd[3] = (uint8_t)(IntPageAdr);
cmd[4] = 0;
_spi->transfer(cmd, sizeof(cmd));
uint8_t *pData = (uint8_t *)pBuffer;
while (size--) {
*pData++ = _spi->transfer(0x00);
}
// release SPI bus for use by other sensors
_spi->cs_release();
_spi_sem->give();
return true;
}
// *** END OF INTERNAL FUNCTIONS ***
void DataFlash_APM1::PageErase (uint16_t PageAdr)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
// Send page erase command
_spi->transfer(DF_PAGE_ERASE);
if(df_PageSize==512) {
_spi->transfer((uint8_t)(PageAdr >> 7));
_spi->transfer((uint8_t)(PageAdr << 1));
}else{
_spi->transfer((uint8_t)(PageAdr >> 6));
_spi->transfer((uint8_t)(PageAdr << 2));
}
_spi->transfer(0x00);
//initiate flash page erase
_spi->cs_release();
_spi_sem->give();
while(!ReadStatus()) ;
}
void DataFlash_APM1::BlockErase (uint16_t BlockAdr)
{
if (!_sem_take(1))
return;
// activate dataflash command decoder
_spi->cs_assert();
// Send block erase command
_spi->transfer(DF_BLOCK_ERASE);
/*
if (df_PageSize==512) {
_spi->transfer((uint8_t)(BlockAdr >> 3));
_spi->transfer((uint8_t)(BlockAdr << 5));
} else {
_spi->transfer((uint8_t)(BlockAdr >> 4));
_spi->transfer((uint8_t)(BlockAdr << 4));
}*/
if (df_PageSize==512) {
_spi->transfer((uint8_t)(BlockAdr >> 4));
_spi->transfer((uint8_t)(BlockAdr << 4));
} else {
_spi->transfer((uint8_t)(BlockAdr >> 3));
_spi->transfer((uint8_t)(BlockAdr << 5));
}
_spi->transfer(0x00);
//serialDebug("BL Erase, %d\n", BlockAdr);
//initiate flash page erase
_spi->cs_release();
while(!ReadStatus()) ;
_spi_sem->give();
}
void DataFlash_APM1::ChipErase()
{
if (!_sem_take(5))
return;
// activate dataflash command decoder
_spi->cs_assert();
// opcodes for chip erase
_spi->transfer(DF_CHIP_ERASE_0);
_spi->transfer(DF_CHIP_ERASE_1);
_spi->transfer(DF_CHIP_ERASE_2);
_spi->transfer(DF_CHIP_ERASE_3);
//initiate flash page erase
_spi->cs_release();
while(!ReadStatus()) {
hal.scheduler->delay(6);
}
_spi_sem->give();
}
// Writing too quickly to DF on APM1/APM2 corrupts the flash. This
// could be done at a lower level to more generally restrict bandwidth
void DataFlash_APM1::WroteStartupFormat()
{
if (! hal.util->get_soft_armed()) {
hal.scheduler->delay(10);
}
}
void DataFlash_APM1::WroteStartupParam()
{
if (! hal.util->get_soft_armed()) {
hal.scheduler->delay(2);
}
}