// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- //**************************************************************** // Function that controls aileron/rudder, elevator, rudder (if 4 channel control) and throttle to produce desired attitude and airspeed. //**************************************************************** static void stabilize() { float ch1_inf = 1.0; float ch2_inf = 1.0; float ch4_inf = 1.0; float speed_scaler; if (g.airspeed_enabled == true){ if(airspeed > 0) speed_scaler = (STANDARD_SPEED * 100) / airspeed; else speed_scaler = 2.0; speed_scaler = constrain(speed_scaler, 0.5, 2.0); } else { if (g.channel_throttle.servo_out > 0){ speed_scaler = 0.5 + ((float)THROTTLE_CRUISE / g.channel_throttle.servo_out / 2.0); // First order taylor expansion of square root // Should maybe be to the 2/7 power, but we aren't goint to implement that... }else{ speed_scaler = 1.67; } speed_scaler = constrain(speed_scaler, 0.6, 1.67); // This case is constrained tighter as we don't have real speed info } if(crash_timer > 0){ nav_roll = 0; } if (inverted_flight) { // we want to fly upside down. We need to cope with wrap of // the roll_sensor interfering with wrap of nav_roll, which // would really confuse the PID code. The easiest way to // handle this is to ensure both go in the same direction from // zero nav_roll += 18000; if (dcm.roll_sensor < 0) nav_roll -= 36000; } // For Testing Only // roll_sensor = (radio_in[CH_RUDDER] - radio_trim[CH_RUDDER]) * 10; // Serial.printf_P(PSTR(" roll_sensor ")); // Serial.print(roll_sensor,DEC); // Calculate dersired servo output for the roll // --------------------------------------------- g.channel_roll.servo_out = g.pidServoRoll.get_pid((nav_roll - dcm.roll_sensor), delta_ms_fast_loop, speed_scaler); long tempcalc = nav_pitch + fabs(dcm.roll_sensor * g.kff_pitch_compensation) + (g.channel_throttle.servo_out * g.kff_throttle_to_pitch) - (dcm.pitch_sensor - g.pitch_trim); if (inverted_flight) { // when flying upside down the elevator control is inverted tempcalc = -tempcalc; } g.channel_pitch.servo_out = g.pidServoPitch.get_pid(tempcalc, delta_ms_fast_loop, speed_scaler); // Mix Stick input to allow users to override control surfaces // ----------------------------------------------------------- if ((control_mode < FLY_BY_WIRE_A) || (ENABLE_STICK_MIXING == 1 && control_mode > FLY_BY_WIRE_B)) { // TODO: use RC_Channel control_mix function? ch1_inf = (float)g.channel_roll.radio_in - (float)g.channel_roll.radio_trim; ch1_inf = fabs(ch1_inf); ch1_inf = min(ch1_inf, 400.0); ch1_inf = ((400.0 - ch1_inf) /400.0); ch2_inf = (float)g.channel_pitch.radio_in - g.channel_pitch.radio_trim; ch2_inf = fabs(ch2_inf); ch2_inf = min(ch2_inf, 400.0); ch2_inf = ((400.0 - ch2_inf) /400.0); // scale the sensor input based on the stick input // ----------------------------------------------- g.channel_roll.servo_out *= ch1_inf; g.channel_pitch.servo_out *= ch2_inf; // Mix in stick inputs // ------------------- g.channel_roll.servo_out += g.channel_roll.pwm_to_angle(); g.channel_pitch.servo_out += g.channel_pitch.pwm_to_angle(); //Serial.printf_P(PSTR(" servo_out[CH_ROLL] ")); //Serial.println(servo_out[CH_ROLL],DEC); } // stick mixing performed for rudder for all cases including FBW unless disabled for higher modes // important for steering on the ground during landing // ----------------------------------------------- if (control_mode <= FLY_BY_WIRE_B || ENABLE_STICK_MIXING == 1) { ch4_inf = (float)g.channel_rudder.radio_in - (float)g.channel_rudder.radio_trim; ch4_inf = fabs(ch4_inf); ch4_inf = min(ch4_inf, 400.0); ch4_inf = ((400.0 - ch4_inf) /400.0); } // Apply output to Rudder // ---------------------- calc_nav_yaw(speed_scaler); g.channel_rudder.servo_out *= ch4_inf; g.channel_rudder.servo_out += g.channel_rudder.pwm_to_angle(); // Call slew rate limiter if used // ------------------------------ //#if(ROLL_SLEW_LIMIT != 0) // g.channel_roll.servo_out = roll_slew_limit(g.channel_roll.servo_out); //#endif } static void crash_checker() { if(dcm.pitch_sensor < -4500){ crash_timer = 255; } if(crash_timer > 0) crash_timer--; } static void calc_throttle() { if (g.airspeed_enabled == false) { int throttle_target = g.throttle_cruise + throttle_nudge; // no airspeed sensor, we use nav pitch to determine the proper throttle output // AUTO, RTL, etc // --------------------------------------------------------------------------- if (nav_pitch >= 0) { g.channel_throttle.servo_out = throttle_target + (g.throttle_max - throttle_target) * nav_pitch / g.pitch_limit_max; } else { g.channel_throttle.servo_out = throttle_target - (throttle_target - g.throttle_min) * nav_pitch / g.pitch_limit_min; } g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); } else { // throttle control with airspeed compensation // ------------------------------------------- energy_error = airspeed_energy_error + (float)altitude_error * 0.098f; // positive energy errors make the throttle go higher g.channel_throttle.servo_out = g.throttle_cruise + g.pidTeThrottle.get_pid(energy_error, dTnav); g.channel_throttle.servo_out += (g.channel_pitch.servo_out * g.kff_pitch_to_throttle); g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); // TODO - resolve why "saved" is used here versus "current" } } /***************************************** * Calculate desired roll/pitch/yaw angles (in medium freq loop) *****************************************/ // Yaw is separated into a function for future implementation of heading hold on rolling take-off // ---------------------------------------------------------------------------------------- static void calc_nav_yaw(float speed_scaler) { #if HIL_MODE != HIL_MODE_ATTITUDE Vector3f temp = imu.get_accel(); long error = -temp.y; // Control is a feedforward from the aileron control + a PID to coordinate the turn (drive y axis accel to zero) g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out + g.pidServoRudder.get_pid(error, delta_ms_fast_loop, speed_scaler); #else g.channel_rudder.servo_out = g.kff_rudder_mix * g.channel_roll.servo_out; // XXX probably need something here based on heading #endif } static void calc_nav_pitch() { // Calculate the Pitch of the plane // -------------------------------- if (g.airspeed_enabled == true) { nav_pitch = -g.pidNavPitchAirspeed.get_pid(airspeed_error, dTnav); } else { nav_pitch = g.pidNavPitchAltitude.get_pid(altitude_error, dTnav); } nav_pitch = constrain(nav_pitch, g.pitch_limit_min.get(), g.pitch_limit_max.get()); } #define YAW_DAMPENER 0 static void calc_nav_roll() { // Adjust gain based on ground speed - We need lower nav gain going in to a headwind, etc. // This does not make provisions for wind speed in excess of airframe speed nav_gain_scaler = (float)g_gps->ground_speed / (STANDARD_SPEED * 100.0); nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4); // negative error = left turn // positive error = right turn // Calculate the required roll of the plane // ---------------------------------------- nav_roll = g.pidNavRoll.get_pid(bearing_error, dTnav, nav_gain_scaler); //returns desired bank angle in degrees*100 nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get()); Vector3f omega; omega = dcm.get_gyro(); // rate limiter long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377 rate = constrain(rate, -6000, 6000); // limit input int dampener = rate * YAW_DAMPENER; // 34377 * .175 = 6000 // add in yaw dampener nav_roll -= dampener; nav_roll = constrain(nav_roll, -g.roll_limit.get(), g.roll_limit.get()); } /***************************************** * Roll servo slew limit *****************************************/ /* float roll_slew_limit(float servo) { static float last; float temp = constrain(servo, last-ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f, last + ROLL_SLEW_LIMIT * delta_ms_fast_loop/1000.f); last = servo; return temp; }*/ /***************************************** * Throttle slew limit *****************************************/ static void throttle_slew_limit() { static int last = 1000; if(g.throttle_slewrate) { // if slew limit rate is set to zero then do not slew limit float temp = g.throttle_slewrate * G_Dt * 10.f; // * 10 to scale % to pwm range of 1000 to 2000 Serial.print("radio "); Serial.print(g.channel_throttle.radio_out); Serial.print(" temp "); Serial.print(temp); Serial.print(" last "); Serial.println(last); g.channel_throttle.radio_out = constrain(g.channel_throttle.radio_out, last - (int)temp, last + (int)temp); last = g.channel_throttle.radio_out; } } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations static void reset_I(void) { g.pidNavRoll.reset_I(); g.pidNavPitchAirspeed.reset_I(); g.pidNavPitchAltitude.reset_I(); g.pidTeThrottle.reset_I(); // g.pidAltitudeThrottle.reset_I(); } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos(void) { int flapSpeedSource = 0; if(control_mode == MANUAL){ // do a direct pass through of radio values if (g.mix_mode == 0){ g.channel_roll.radio_out = g.channel_roll.radio_in; g.channel_pitch.radio_out = g.channel_pitch.radio_in; } else { g.channel_roll.radio_out = APM_RC.InputCh(CH_ROLL); g.channel_pitch.radio_out = APM_RC.InputCh(CH_PITCH); } g.channel_throttle.radio_out = g.channel_throttle.radio_in; g.channel_rudder.radio_out = g.channel_rudder.radio_in; if (g.rc_5_funct == RC_5_FUNCT_AILERON) g.rc_5.radio_out = g.rc_5.radio_in; if (g.rc_6_funct == RC_6_FUNCT_AILERON) g.rc_6.radio_out = g.rc_6.radio_in; } else { if (g.mix_mode == 0) { g.channel_roll.calc_pwm(); g.channel_pitch.calc_pwm(); g.channel_rudder.calc_pwm(); if (g.rc_5_funct == RC_5_FUNCT_AILERON) { g.rc_5.servo_out = g.channel_roll.servo_out; g.rc_5.calc_pwm(); } if (g.rc_6_funct == RC_6_FUNCT_AILERON) { g.rc_6.servo_out = g.channel_roll.servo_out; g.rc_6.calc_pwm(); } }else{ /*Elevon mode*/ float ch1; float ch2; ch1 = BOOL_TO_SIGN(g.reverse_elevons) * (g.channel_pitch.servo_out - g.channel_roll.servo_out); ch2 = g.channel_pitch.servo_out + g.channel_roll.servo_out; g.channel_roll.radio_out = elevon1_trim + (BOOL_TO_SIGN(g.reverse_ch1_elevon) * (ch1 * 500.0/ SERVO_MAX)); g.channel_pitch.radio_out = elevon2_trim + (BOOL_TO_SIGN(g.reverse_ch2_elevon) * (ch2 * 500.0/ SERVO_MAX)); } #if THROTTLE_OUT == 0 g.channel_throttle.servo_out = 0; #else // convert 0 to 100% into PWM g.channel_throttle.servo_out = constrain(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); #endif g.channel_throttle.calc_pwm(); /* TO DO - fix this for RC_Channel library #if THROTTLE_REVERSE == 1 radio_out[CH_THROTTLE] = radio_max(CH_THROTTLE) + radio_min(CH_THROTTLE) - radio_out[CH_THROTTLE]; #endif */ throttle_slew_limit(); } if(control_mode <= FLY_BY_WIRE_B) { if (g.rc_5_funct == RC_5_FUNCT_FLAP_AUTO) g.rc_5.radio_out = g.rc_5.radio_in; if (g.rc_6_funct == RC_6_FUNCT_FLAP_AUTO) g.rc_6.radio_out = g.rc_6.radio_in; } else if (control_mode >= FLY_BY_WIRE_C) { if (g.airspeed_enabled == true) { flapSpeedSource = g.airspeed_cruise; } else { flapSpeedSource = g.throttle_cruise; } if ( flapSpeedSource > g.flap_1_speed) { if(g.rc_5_funct == RC_5_FUNCT_FLAP_AUTO) g.rc_5.servo_out = 0; if(g.rc_6_funct == RC_6_FUNCT_FLAP_AUTO) g.rc_6.servo_out = 0; } else if (flapSpeedSource > g.flap_2_speed) { if(g.rc_5_funct == RC_5_FUNCT_FLAP_AUTO) g.rc_5.servo_out = g.flap_1_percent; if(g.rc_6_funct == RC_6_FUNCT_FLAP_AUTO) g.rc_6.servo_out = g.flap_1_percent; } else { if(g.rc_5_funct == RC_5_FUNCT_FLAP_AUTO) g.rc_5.servo_out = g.flap_2_percent; if(g.rc_6_funct == RC_6_FUNCT_FLAP_AUTO) g.rc_6.servo_out = g.flap_2_percent; } } #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS // send values to the PWM timers for output // ---------------------------------------- APM_RC.OutputCh(CH_1, g.channel_roll.radio_out); // send to Servos APM_RC.OutputCh(CH_2, g.channel_pitch.radio_out); // send to Servos APM_RC.OutputCh(CH_3, g.channel_throttle.radio_out); // send to Servos APM_RC.OutputCh(CH_4, g.channel_rudder.radio_out); // send to Servos APM_RC.OutputCh(CH_5, g.rc_5.radio_out); // send to Servos APM_RC.OutputCh(CH_6, g.rc_6.radio_out); // send to Servos #endif } static void demo_servos(byte i) { while(i > 0){ gcs.send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS APM_RC.OutputCh(1, 1400); mavlink_delay(400); APM_RC.OutputCh(1, 1600); mavlink_delay(200); APM_RC.OutputCh(1, 1500); #endif mavlink_delay(400); i--; } }