#include "AC_CustomControl_PID.h" #if CUSTOMCONTROL_PID_ENABLED // table of user settable parameters const AP_Param::GroupInfo AC_CustomControl_PID::var_info[] = { // @Param: ANG_RLL_P // @DisplayName: Roll axis angle controller P gain // @Description: Roll axis angle controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate // @Range: 3.000 12.000 // @Range{Sub}: 0.0 12.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_roll2, "ANG_RLL_", 1, AC_CustomControl_PID, AC_P), // @Param: ANG_PIT_P // @DisplayName: Pitch axis angle controller P gain // @Description: Pitch axis angle controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate // @Range: 3.000 12.000 // @Range{Sub}: 0.0 12.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_pitch2, "ANG_PIT_", 2, AC_CustomControl_PID, AC_P), // @Param: ANG_YAW_P // @DisplayName: Yaw axis angle controller P gain // @Description: Yaw axis angle controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate // @Range: 3.000 12.000 // @Range{Sub}: 0.0 6.000 // @User: Standard AP_SUBGROUPINFO(_p_angle_yaw2, "ANG_YAW_", 3, AC_CustomControl_PID, AC_P), // @Param: RAT_RLL_P // @DisplayName: Roll axis rate controller P gain // @Description: Roll axis rate controller P gain. Corrects in proportion to the difference between the desired roll rate vs actual roll rate // @Range: 0.01 0.5 // @Increment: 0.005 // @User: Standard // @Param: RAT_RLL_I // @DisplayName: Roll axis rate controller I gain // @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate // @Range: 0.01 2.0 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_IMAX // @DisplayName: Roll axis rate controller I gain maximum // @Description: Roll axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_D // @DisplayName: Roll axis rate controller D gain // @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate // @Range: 0.0 0.05 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FF // @DisplayName: Roll axis rate controller feed forward // @Description: Roll axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FLTT // @DisplayName: Roll axis rate controller target frequency in Hz // @Description: Roll axis rate controller target frequency in Hz // @Range: 5 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_FLTE // @DisplayName: Roll axis rate controller error frequency in Hz // @Description: Roll axis rate controller error frequency in Hz // @Range: 0 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_FLTD // @DisplayName: Roll axis rate controller derivative frequency in Hz // @Description: Roll axis rate controller derivative frequency in Hz // @Range: 5 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_SMAX // @DisplayName: Roll slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_RLL_PDMX // @DisplayName: Roll axis rate controller PD sum maximum // @Description: Roll axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @User: Advanced // @Param: RAT_RLL_D_FF // @DisplayName: Roll Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_RLL_NTF // @DisplayName: Roll Target notch filter index // @Description: Roll Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: RAT_RLL_NEF // @DisplayName: Roll Error notch filter index // @Description: Roll Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_atti_rate_roll, "RAT_RLL_", 4, AC_CustomControl_PID, AC_PID), // @Param: RAT_PIT_P // @DisplayName: Pitch axis rate controller P gain // @Description: Pitch axis rate controller P gain. Corrects in proportion to the difference between the desired pitch rate vs actual pitch rate // @Range: 0.01 0.50 // @Increment: 0.005 // @User: Standard // @Param: RAT_PIT_I // @DisplayName: Pitch axis rate controller I gain // @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate // @Range: 0.01 2.0 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_IMAX // @DisplayName: Pitch axis rate controller I gain maximum // @Description: Pitch axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_D // @DisplayName: Pitch axis rate controller D gain // @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate // @Range: 0.0 0.05 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FF // @DisplayName: Pitch axis rate controller feed forward // @Description: Pitch axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FLTT // @DisplayName: Pitch axis rate controller target frequency in Hz // @Description: Pitch axis rate controller target frequency in Hz // @Range: 5 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FLTE // @DisplayName: Pitch axis rate controller error frequency in Hz // @Description: Pitch axis rate controller error frequency in Hz // @Range: 0 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FLTD // @DisplayName: Pitch axis rate controller derivative frequency in Hz // @Description: Pitch axis rate controller derivative frequency in Hz // @Range: 5 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_SMAX // @DisplayName: Pitch slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_PIT_PDMX // @DisplayName: Pitch axis rate controller PD sum maximum // @Description: Pitch axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @User: Advanced // @Param: RAT_PIT_D_FF // @DisplayName: Pitch Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_PIT_NTF // @DisplayName: Pitch Target notch filter index // @Description: Pitch Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: RAT_PIT_NEF // @DisplayName: Pitch Error notch filter index // @Description: Pitch Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_atti_rate_pitch, "RAT_PIT_", 5, AC_CustomControl_PID, AC_PID), // @Param: RAT_YAW_P // @DisplayName: Yaw axis rate controller P gain // @Description: Yaw axis rate controller P gain. Corrects in proportion to the difference between the desired yaw rate vs actual yaw rate // @Range: 0.10 2.50 // @Increment: 0.005 // @User: Standard // @Param: RAT_YAW_I // @DisplayName: Yaw axis rate controller I gain // @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate // @Range: 0.010 1.0 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_IMAX // @DisplayName: Yaw axis rate controller I gain maximum // @Description: Yaw axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_D // @DisplayName: Yaw axis rate controller D gain // @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate // @Range: 0.000 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FF // @DisplayName: Yaw axis rate controller feed forward // @Description: Yaw axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FLTT // @DisplayName: Yaw axis rate controller target frequency in Hz // @Description: Yaw axis rate controller target frequency in Hz // @Range: 1 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FLTE // @DisplayName: Yaw axis rate controller error frequency in Hz // @Description: Yaw axis rate controller error frequency in Hz // @Range: 0 20 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FLTD // @DisplayName: Yaw axis rate controller derivative frequency in Hz // @Description: Yaw axis rate controller derivative frequency in Hz // @Range: 5 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_SMAX // @DisplayName: Yaw slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_YAW_PDMX // @DisplayName: Yaw axis rate controller PD sum maximum // @Description: Yaw axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @User: Advanced // @Param: RAT_YAW_D_FF // @DisplayName: Yaw Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_YAW_NTF // @DisplayName: Yaw Target notch filter index // @Description: Yaw Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: RAT_YAW_NEF // @DisplayName: Yaw Error notch filter index // @Description: Yaw Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_atti_rate_yaw, "RAT_YAW_", 6, AC_CustomControl_PID, AC_PID), AP_GROUPEND }; AC_CustomControl_PID::AC_CustomControl_PID(AC_CustomControl& frontend, AP_AHRS_View*& ahrs, AC_AttitudeControl_Multi*& att_control, AP_MotorsMulticopter*& motors, float dt) : AC_CustomControl_Backend(frontend, ahrs, att_control, motors, dt), _p_angle_roll2(AC_ATTITUDE_CONTROL_ANGLE_P * 0.90f), _p_angle_pitch2(AC_ATTITUDE_CONTROL_ANGLE_P * 0.90f), _p_angle_yaw2(AC_ATTITUDE_CONTROL_ANGLE_P * 0.90f), _pid_atti_rate_roll(AC_ATC_MULTI_RATE_RP_P * 0.90f, AC_ATC_MULTI_RATE_RP_I * 0.90f, AC_ATC_MULTI_RATE_RP_D * 0.90f, 0.0f, AC_ATC_MULTI_RATE_RP_IMAX * 0.90f, AC_ATC_MULTI_RATE_RP_FILT_HZ * 0.90f, 0.0f, AC_ATC_MULTI_RATE_RP_FILT_HZ * 0.90f), _pid_atti_rate_pitch(AC_ATC_MULTI_RATE_RP_P * 0.90f, AC_ATC_MULTI_RATE_RP_I * 0.90f, AC_ATC_MULTI_RATE_RP_D * 0.90f, 0.0f, AC_ATC_MULTI_RATE_RP_IMAX * 0.90f, AC_ATC_MULTI_RATE_RP_FILT_HZ * 0.90f, 0.0f, AC_ATC_MULTI_RATE_RP_FILT_HZ * 0.90f), _pid_atti_rate_yaw(AC_ATC_MULTI_RATE_YAW_P * 0.90f, AC_ATC_MULTI_RATE_YAW_I * 0.90f, AC_ATC_MULTI_RATE_YAW_D * 0.90f, 0.0f, AC_ATC_MULTI_RATE_YAW_IMAX * 0.90f, AC_ATC_MULTI_RATE_RP_FILT_HZ * 0.90f, AC_ATC_MULTI_RATE_YAW_FILT_HZ * 0.90f, 0.0f) { _dt = dt; AP_Param::setup_object_defaults(this, var_info); } Vector3f AC_CustomControl_PID::update() { // reset controller based on spool state switch (_motors->get_spool_state()) { case AP_Motors::SpoolState::SHUT_DOWN: case AP_Motors::SpoolState::GROUND_IDLE: // We are still at the ground. Reset custom controller to avoid // build up, ex: integrator reset(); break; case AP_Motors::SpoolState::THROTTLE_UNLIMITED: case AP_Motors::SpoolState::SPOOLING_UP: case AP_Motors::SpoolState::SPOOLING_DOWN: // we are off the ground break; } // run custom controller after here Quaternion attitude_body, attitude_target; _ahrs->get_quat_body_to_ned(attitude_body); attitude_target = _att_control->get_attitude_target_quat(); // This vector represents the angular error to rotate the thrust vector using x and y and heading using z Vector3f attitude_error; float _thrust_angle, _thrust_error_angle; _att_control->thrust_heading_rotation_angles(attitude_target, attitude_body, attitude_error, _thrust_angle, _thrust_error_angle); // recalculate ang vel feedforward from attitude target model // rotation from the target frame to the body frame Quaternion rotation_target_to_body = attitude_body.inverse() * attitude_target; // target angle velocity vector in the body frame Vector3f ang_vel_body_feedforward = rotation_target_to_body * _att_control->get_attitude_target_ang_vel(); // run attitude controller Vector3f target_rate; target_rate[0] = _p_angle_roll2.kP() * attitude_error.x + ang_vel_body_feedforward[0]; target_rate[1] = _p_angle_pitch2.kP() * attitude_error.y + ang_vel_body_feedforward[1]; target_rate[2] = _p_angle_yaw2.kP() * attitude_error.z + ang_vel_body_feedforward[2]; // run rate controller Vector3f gyro_latest = _ahrs->get_gyro_latest(); Vector3f motor_out; motor_out.x = _pid_atti_rate_roll.update_all(target_rate[0], gyro_latest[0], _dt, false); motor_out.y = _pid_atti_rate_pitch.update_all(target_rate[1], gyro_latest[1], _dt, false); motor_out.z = _pid_atti_rate_yaw.update_all(target_rate[2], gyro_latest[2], _dt, false); return motor_out; } // This example uses exact same controller architecture as ArduCopter attitude controller without all the safe guard against saturation. // The gains are scaled 0.9 times to better detect switch over response. // Note that integrator are not reset correctly as it is done in reset_main_att_controller inside AC_CustomControl.cpp // This is done intentionally to demonstrate switch over performance of two exact controller with different reset handling. void AC_CustomControl_PID::reset(void) { _pid_atti_rate_roll.reset_I(); _pid_atti_rate_pitch.reset_I(); _pid_atti_rate_yaw.reset_I(); _pid_atti_rate_roll.reset_filter(); _pid_atti_rate_pitch.reset_filter(); _pid_atti_rate_yaw.reset_filter(); } void AC_CustomControl_PID::set_notch_sample_rate(float sample_rate) { #if AP_FILTER_ENABLED _pid_atti_rate_roll.set_notch_sample_rate(sample_rate); _pid_atti_rate_pitch.set_notch_sample_rate(sample_rate); _pid_atti_rate_yaw.set_notch_sample_rate(sample_rate); #endif } #endif