#include "Plane.h" /* Check for automatic takeoff conditions being met using the following sequence: * 1) Check for adequate GPS lock - if not return false * 2) Check the gravity compensated longitudinal acceleration against the threshold and start the timer if true * 3) Wait until the timer has reached the specified value (increments of 0.1 sec) and then check the GPS speed against the threshold * 4) If the GPS speed is above the threshold and the attitude is within limits then return true and reset the timer * 5) If the GPS speed and attitude within limits has not been achieved after 2.5 seconds, return false and reset the timer * 6) If the time lapsed since the last timecheck is greater than 0.2 seconds, return false and reset the timer * NOTE : This function relies on the TECS 50Hz processing for its acceleration measure. */ bool Plane::auto_takeoff_check(void) { // this is a more advanced check that relies on TECS uint32_t now = millis(); uint16_t wait_time_ms = MIN(uint16_t(g.takeoff_throttle_delay)*100,12700); // reset all takeoff state if disarmed if (!hal.util->get_soft_armed()) { memset(&takeoff_state, 0, sizeof(takeoff_state)); return false; } // Reset states if process has been interrupted if (takeoff_state.last_check_ms && (now - takeoff_state.last_check_ms) > 200) { memset(&takeoff_state, 0, sizeof(takeoff_state)); return false; } takeoff_state.last_check_ms = now; // Check for bad GPS if (gps.status() < AP_GPS::GPS_OK_FIX_3D) { // no auto takeoff without GPS lock return false; } if (!takeoff_state.launchTimerStarted && !is_zero(g.takeoff_throttle_min_accel)) { // we are requiring an X acceleration event to launch float xaccel = SpdHgt_Controller->get_VXdot(); if (g2.takeoff_throttle_accel_count <= 1) { if (xaccel < g.takeoff_throttle_min_accel) { goto no_launch; } } else { // we need multiple accel events if (now - takeoff_state.accel_event_ms > 500) { takeoff_state.accel_event_counter = 0; } bool odd_event = ((takeoff_state.accel_event_counter & 1) != 0); bool got_event = (odd_event?xaccel < -g.takeoff_throttle_min_accel : xaccel > g.takeoff_throttle_min_accel); if (got_event) { takeoff_state.accel_event_counter++; takeoff_state.accel_event_ms = now; } if (takeoff_state.accel_event_counter < g2.takeoff_throttle_accel_count) { goto no_launch; } } } // we've reached the acceleration threshold, so start the timer if (!takeoff_state.launchTimerStarted) { takeoff_state.launchTimerStarted = true; takeoff_state.last_tkoff_arm_time = now; if (now - takeoff_state.last_report_ms > 2000) { gcs().send_text(MAV_SEVERITY_INFO, "Armed AUTO, xaccel = %.1f m/s/s, waiting %.1f sec", (double)SpdHgt_Controller->get_VXdot(), (double)(wait_time_ms*0.001f)); takeoff_state.last_report_ms = now; } } // Only perform velocity check if not timed out if ((now - takeoff_state.last_tkoff_arm_time) > wait_time_ms+100U) { if (now - takeoff_state.last_report_ms > 2000) { gcs().send_text(MAV_SEVERITY_WARNING, "Timeout AUTO"); takeoff_state.last_report_ms = now; } goto no_launch; } if (!quadplane.is_tailsitter() && !(g2.flight_options & FlightOptions::DISABLE_TOFF_ATTITUDE_CHK)) { // Check aircraft attitude for bad launch if (ahrs.pitch_sensor <= -3000 || ahrs.pitch_sensor >= 4500 || (!fly_inverted() && labs(ahrs.roll_sensor) > 3000)) { gcs().send_text(MAV_SEVERITY_WARNING, "Bad launch AUTO"); takeoff_state.accel_event_counter = 0; goto no_launch; } } // Check ground speed and time delay if (((gps.ground_speed() > g.takeoff_throttle_min_speed || is_zero(g.takeoff_throttle_min_speed))) && ((now - takeoff_state.last_tkoff_arm_time) >= wait_time_ms)) { gcs().send_text(MAV_SEVERITY_INFO, "Triggered AUTO. GPS speed = %.1f", (double)gps.ground_speed()); takeoff_state.launchTimerStarted = false; takeoff_state.last_tkoff_arm_time = 0; takeoff_state.start_time_ms = now; steer_state.locked_course_err = 0; // use current heading without any error offset return true; } // we're not launching yet, but the timer is still going return false; no_launch: takeoff_state.launchTimerStarted = false; takeoff_state.last_tkoff_arm_time = 0; return false; } /* calculate desired bank angle during takeoff, setting nav_roll_cd */ void Plane::takeoff_calc_roll(void) { if (steer_state.hold_course_cd == -1) { // we don't yet have a heading to hold - just level // the wings until we get up enough speed to get a GPS heading nav_roll_cd = 0; return; } calc_nav_roll(); // during takeoff use the level flight roll limit to prevent large // wing strike. Slowly allow for more roll as we get higher above // the takeoff altitude float roll_limit = roll_limit_cd*0.01f; float baro_alt = barometer.get_altitude(); // below 5m use the LEVEL_ROLL_LIMIT const float lim1 = 5; // at 15m allow for full roll const float lim2 = 15; if (baro_alt < auto_state.baro_takeoff_alt+lim1) { roll_limit = g.level_roll_limit; } else if (baro_alt < auto_state.baro_takeoff_alt+lim2) { float proportion = (baro_alt - (auto_state.baro_takeoff_alt+lim1)) / (lim2 - lim1); roll_limit = (1-proportion) * g.level_roll_limit + proportion * roll_limit; } nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit*100UL, roll_limit*100UL); } /* calculate desired pitch angle during takeoff, setting nav_pitch_cd */ void Plane::takeoff_calc_pitch(void) { if (auto_state.highest_airspeed < g.takeoff_rotate_speed) { // we have not reached rotate speed, use a target pitch of 5 // degrees. This should be enough to get the tail off the // ground, while making it unlikely that overshoot in the // pitch controller will cause a prop strike nav_pitch_cd = 500; return; } if (ahrs.airspeed_sensor_enabled()) { int16_t takeoff_pitch_min_cd = get_takeoff_pitch_min_cd(); calc_nav_pitch(); if (nav_pitch_cd < takeoff_pitch_min_cd) { nav_pitch_cd = takeoff_pitch_min_cd; } } else { nav_pitch_cd = ((gps.ground_speed()*100) / (float)aparm.airspeed_cruise_cm) * auto_state.takeoff_pitch_cd; nav_pitch_cd = constrain_int32(nav_pitch_cd, 500, auto_state.takeoff_pitch_cd); } if (aparm.stall_prevention != 0) { if (mission.get_current_nav_cmd().id == MAV_CMD_NAV_TAKEOFF || control_mode == &mode_takeoff) { // during takeoff we want to prioritise roll control over // pitch. Apply a reduction in pitch demand if our roll is // significantly off. The aim of this change is to // increase the robustness of hand launches, particularly // in cross-winds. If we start to roll over then we reduce // pitch demand until the roll recovers float roll_error_rad = radians(constrain_float(labs(nav_roll_cd - ahrs.roll_sensor) * 0.01, 0, 90)); float reduction = sq(cosf(roll_error_rad)); nav_pitch_cd *= reduction; } } } /* * get the pitch min used during takeoff. This matches the mission pitch until near the end where it allows it to levels off */ int16_t Plane::get_takeoff_pitch_min_cd(void) { if (flight_stage != AP_Vehicle::FixedWing::FLIGHT_TAKEOFF) { return auto_state.takeoff_pitch_cd; } int32_t relative_alt_cm = adjusted_relative_altitude_cm(); int32_t remaining_height_to_target_cm = (auto_state.takeoff_altitude_rel_cm - relative_alt_cm); // seconds to target alt method if (g.takeoff_pitch_limit_reduction_sec > 0) { // if height-below-target has been initialized then use it to create and apply a scaler to the pitch_min if (auto_state.height_below_takeoff_to_level_off_cm != 0) { float scalar = remaining_height_to_target_cm / (float)auto_state.height_below_takeoff_to_level_off_cm; return auto_state.takeoff_pitch_cd * scalar; } // are we entering the region where we want to start leveling off before we reach takeoff alt? if (auto_state.sink_rate < -0.1f) { float sec_to_target = (remaining_height_to_target_cm * 0.01f) / (-auto_state.sink_rate); if (sec_to_target > 0 && relative_alt_cm >= 1000 && sec_to_target <= g.takeoff_pitch_limit_reduction_sec) { // make a note of that altitude to use it as a start height for scaling gcs().send_text(MAV_SEVERITY_INFO, "Takeoff level-off starting at %dm", int(remaining_height_to_target_cm/100)); auto_state.height_below_takeoff_to_level_off_cm = remaining_height_to_target_cm; } } } return auto_state.takeoff_pitch_cd; } /* return a tail hold percentage during initial takeoff for a tail dragger This can be used either in auto-takeoff or in FBWA mode with FBWA_TDRAG_CHAN enabled */ int8_t Plane::takeoff_tail_hold(void) { bool in_takeoff = ((control_mode == &mode_auto && !auto_state.takeoff_complete) || (control_mode == &mode_fbwa && auto_state.fbwa_tdrag_takeoff_mode)); if (!in_takeoff) { // not in takeoff return 0; } if (g.takeoff_tdrag_elevator == 0) { // no takeoff elevator set goto return_zero; } if (auto_state.highest_airspeed >= g.takeoff_tdrag_speed1) { // we've passed speed1. We now raise the tail and aim for // level pitch. Return 0 meaning no fixed elevator setting goto return_zero; } if (ahrs.pitch_sensor > auto_state.initial_pitch_cd + 1000) { // the pitch has gone up by more then 10 degrees over the // initial pitch. This may mean the nose is coming up for an // early liftoff, perhaps due to a bad setting of // g.takeoff_tdrag_speed1. Go to level flight to prevent a // stall goto return_zero; } // we are holding the tail down return g.takeoff_tdrag_elevator; return_zero: if (auto_state.fbwa_tdrag_takeoff_mode) { gcs().send_text(MAV_SEVERITY_NOTICE, "FBWA tdrag off"); auto_state.fbwa_tdrag_takeoff_mode = false; } return 0; } /* called when an auto-takeoff is complete */ void Plane::complete_auto_takeoff(void) { #if GEOFENCE_ENABLED == ENABLED if (g.fence_autoenable > 0) { if (! geofence_set_enabled(true, AUTO_TOGGLED)) { gcs().send_text(MAV_SEVERITY_NOTICE, "Enable fence failed (cannot autoenable"); } else { gcs().send_text(MAV_SEVERITY_INFO, "Fence enabled (autoenabled)"); } } #endif } #if LANDING_GEAR_ENABLED == ENABLED /* update landing gear */ void Plane::landing_gear_update(void) { g2.landing_gear.update(relative_ground_altitude(g.rangefinder_landing)); } #endif