#include "AP_Logger_Backend.h" #include "LoggerMessageWriter.h" #include extern const AP_HAL::HAL& hal; AP_Logger_Backend::AP_Logger_Backend(AP_Logger &front, class LoggerMessageWriter_DFLogStart *writer) : _front(front), _startup_messagewriter(writer) { writer->set_logger_backend(this); } uint8_t AP_Logger_Backend::num_types() const { return _front._num_types; } const struct LogStructure *AP_Logger_Backend::structure(uint8_t num) const { return _front.structure(num); } uint8_t AP_Logger_Backend::num_units() const { return _front._num_units; } const struct UnitStructure *AP_Logger_Backend::unit(uint8_t num) const { return _front.unit(num); } uint8_t AP_Logger_Backend::num_multipliers() const { return _front._num_multipliers; } const struct MultiplierStructure *AP_Logger_Backend::multiplier(uint8_t num) const { return _front.multiplier(num); } AP_Logger_Backend::vehicle_startup_message_Writer AP_Logger_Backend::vehicle_message_writer() const { return _front._vehicle_messages; } void AP_Logger_Backend::periodic_10Hz(const uint32_t now) { } void AP_Logger_Backend::periodic_1Hz() { if (_rotate_pending && !logging_enabled()) { _rotate_pending = false; // handle log rotation once we stop logging stop_logging_async(); } df_stats_log(); } void AP_Logger_Backend::periodic_fullrate() { push_log_blocks(); } void AP_Logger_Backend::periodic_tasks() { uint32_t now = AP_HAL::millis(); if (now - _last_periodic_1Hz > 1000) { periodic_1Hz(); _last_periodic_1Hz = now; } if (now - _last_periodic_10Hz > 100) { periodic_10Hz(now); _last_periodic_10Hz = now; } periodic_fullrate(); } void AP_Logger_Backend::start_new_log_reset_variables() { _dropped = 0; _startup_messagewriter->reset(); _front.backend_starting_new_log(this); _log_file_size_bytes = 0; } // We may need to make sure data is loggable before starting the // EKF; when allow_start_ekf we should be able to log that data bool AP_Logger_Backend::allow_start_ekf() const { if (!_startup_messagewriter->fmt_done()) { return false; } // we need to push all startup messages out, or the code in // WriteBlockCheckStartupMessages bites us. if (!_startup_messagewriter->finished()) { return false; } return true; } // this method can be overridden to do extra things with your buffer. // for example, in AP_Logger_MAVLink we may push messages into the UART. void AP_Logger_Backend::push_log_blocks() { WriteMoreStartupMessages(); } // returns true if all format messages have been written, and thus it is OK // for other messages to go out to the log bool AP_Logger_Backend::WriteBlockCheckStartupMessages() { #if APM_BUILD_TYPE(APM_BUILD_Replay) return true; #endif if (_startup_messagewriter->fmt_done()) { return true; } if (_writing_startup_messages) { // we have been called by a messagewriter, so writing is OK return true; } if (!_startup_messagewriter->finished() && !hal.scheduler->in_main_thread()) { // only the main thread may write startup messages out return false; } // we're not writing startup messages, so this must be some random // caller hoping to write blocks out. Push out log blocks - we // might end up clearing the buffer..... push_log_blocks(); // even if we did finish writing startup messages, we can't // permit any message to go in as its timestamp will be before // any we wrote in. Time going backwards annoys log readers. // sorry! currently busy writing out startup messages... return false; } // source more messages from the startup message writer: void AP_Logger_Backend::WriteMoreStartupMessages() { #if APM_BUILD_TYPE(APM_BUILD_Replay) return; #endif if (_startup_messagewriter->finished()) { return; } _writing_startup_messages = true; _startup_messagewriter->process(); _writing_startup_messages = false; } /* * support for Write(): */ bool AP_Logger_Backend::Write_Emit_FMT(uint8_t msg_type) { #if APM_BUILD_TYPE(APM_BUILD_Replay) // sure, sure we did.... return true; #endif // get log structure from front end: char ls_name[LS_NAME_SIZE] = {}; char ls_format[LS_FORMAT_SIZE] = {}; char ls_labels[LS_LABELS_SIZE] = {}; char ls_units[LS_UNITS_SIZE] = {}; char ls_multipliers[LS_MULTIPLIERS_SIZE] = {}; struct LogStructure logstruct = { // these will be overwritten, but need to keep the compiler happy: 0, 0, ls_name, ls_format, ls_labels, ls_units, ls_multipliers }; if (!_front.fill_log_write_logstructure(logstruct, msg_type)) { // this is a bug; we've been asked to write out the FMT // message for a msg_type, but the frontend can't supply the // required information INTERNAL_ERROR(AP_InternalError::error_t::logger_missing_logstructure); return false; } if (!Write_Format(&logstruct)) { return false; } if (!Write_Format_Units(&logstruct)) { return false; } return true; } bool AP_Logger_Backend::Write(const uint8_t msg_type, va_list arg_list, bool is_critical) { // stack-allocate a buffer so we can WriteBlock(); this could be // 255 bytes! If we were willing to lose the WriteBlock // abstraction we could do WriteBytes() here instead? const char *fmt = nullptr; uint8_t msg_len; AP_Logger::log_write_fmt *f; for (f = _front.log_write_fmts; f; f=f->next) { if (f->msg_type == msg_type) { fmt = f->fmt; msg_len = f->msg_len; break; } } if (fmt == nullptr) { INTERNAL_ERROR(AP_InternalError::error_t::logger_logwrite_missingfmt); return false; } if (bufferspace_available() < msg_len) { return false; } uint8_t buffer[msg_len]; uint8_t offset = 0; buffer[offset++] = HEAD_BYTE1; buffer[offset++] = HEAD_BYTE2; buffer[offset++] = msg_type; for (uint8_t i=0; iin_main_thread()) { return false; } return true; } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL void AP_Logger_Backend::validate_WritePrioritisedBlock(const void *pBuffer, uint16_t size) { // just check the first few packets to avoid too much overhead // (finding the structures is expensive) static uint16_t count = 0; if (count > 65534) { return; } count++; // we assume here that we ever WritePrioritisedBlock for a single // message. If this assumption becomes false we can't do these // checks. if (size < 3) { AP_HAL::panic("Short prioritised block"); } if (((uint8_t*)pBuffer)[0] != HEAD_BYTE1 || ((uint8_t*)pBuffer)[1] != HEAD_BYTE2) { AP_HAL::panic("Not passed a message"); } const uint8_t type = ((uint8_t*)pBuffer)[2]; uint8_t type_len; const struct LogStructure *s = _front.structure_for_msg_type(type); if (s == nullptr) { const struct AP_Logger::log_write_fmt *t = _front.log_write_fmt_for_msg_type(type); if (t == nullptr) { AP_HAL::panic("No structure for msg_type=%u", type); } type_len = t->msg_len; } else { type_len = s->msg_len; } if (type_len != size) { char name[5] = {}; // get a null-terminated string if (s->name != nullptr) { memcpy(name, s->name, 4); } else { strncpy(name, "?NM?", ARRAY_SIZE(name)); } AP_HAL::panic("Size mismatch for %u (%s) (expected=%u got=%u)\n", type, name, type_len, size); } } #endif bool AP_Logger_Backend::WritePrioritisedBlock(const void *pBuffer, uint16_t size, bool is_critical) { #if CONFIG_HAL_BOARD == HAL_BOARD_SITL && !APM_BUILD_TYPE(APM_BUILD_Replay) validate_WritePrioritisedBlock(pBuffer, size); #endif if (!ShouldLog(is_critical)) { return false; } if (StartNewLogOK()) { start_new_log(); } if (!WritesOK()) { return false; } return _WritePrioritisedBlock(pBuffer, size, is_critical); } bool AP_Logger_Backend::ShouldLog(bool is_critical) { if (!_front.WritesEnabled()) { return false; } if (!_initialised) { return false; } if (!_startup_messagewriter->finished() && !hal.scheduler->in_main_thread()) { // only the main thread may write startup messages out return false; } if (_front.in_log_download() && _front._last_mavlink_log_transfer_message_handled_ms != 0) { if (AP_HAL::millis() - _front._last_mavlink_log_transfer_message_handled_ms < 10000) { if (!_front.vehicle_is_armed()) { // user is transfering files via mavlink return false; } } else { _front._last_mavlink_log_transfer_message_handled_ms = 0; } } if (is_critical && have_logged_armed && !_front._params.file_disarm_rot) { // if we have previously logged while armed then we log all // critical messages from then on. That fixes a problem where // logs show the wrong flight mode if you disarm then arm again return true; } if (!_front.vehicle_is_armed() && !_front.log_while_disarmed()) { return false; } if (_front.vehicle_is_armed()) { have_logged_armed = true; } return true; } void AP_Logger_Backend::PrepForArming() { if (_rotate_pending) { _rotate_pending = false; stop_logging(); } if (logging_started()) { return; } PrepForArming_start_logging(); } bool AP_Logger_Backend::Write_MessageF(const char *fmt, ...) { char msg[65] {}; // sizeof(log_Message.msg) + null-termination va_list ap; va_start(ap, fmt); hal.util->vsnprintf(msg, sizeof(msg), fmt, ap); va_end(ap); return Write_Message(msg); } #if HAL_RALLY_ENABLED // Write rally points bool AP_Logger_Backend::Write_RallyPoint(uint8_t total, uint8_t sequence, const RallyLocation &rally_point) { const struct log_Rally pkt_rally{ LOG_PACKET_HEADER_INIT(LOG_RALLY_MSG), time_us : AP_HAL::micros64(), total : total, sequence : sequence, latitude : rally_point.lat, longitude : rally_point.lng, altitude : rally_point.alt }; return WriteBlock(&pkt_rally, sizeof(pkt_rally)); } // Write rally points bool AP_Logger_Backend::Write_Rally() { // kick off asynchronous write: return _startup_messagewriter->writeallrallypoints(); } #endif /* convert a list entry number back into a log number (which can then be converted into a filename). A "list entry number" is a sequence where the oldest log has a number of 1, the second-from-oldest 2, and so on. Thus the highest list entry number is equal to the number of logs. */ uint16_t AP_Logger_Backend::log_num_from_list_entry(const uint16_t list_entry) { uint16_t oldest_log = find_oldest_log(); if (oldest_log == 0) { return 0; } uint32_t log_num = oldest_log + list_entry - 1; if (log_num > MAX_LOG_FILES) { log_num -= MAX_LOG_FILES; } return (uint16_t)log_num; } // find_oldest_log - find oldest log // returns 0 if no log was found uint16_t AP_Logger_Backend::find_oldest_log() { if (_cached_oldest_log != 0) { return _cached_oldest_log; } uint16_t last_log_num = find_last_log(); if (last_log_num == 0) { return 0; } _cached_oldest_log = last_log_num - get_num_logs() + 1; return _cached_oldest_log; } void AP_Logger_Backend::vehicle_was_disarmed() { if (_front._params.file_disarm_rot) { // rotate our log. Closing the current one and letting the // logging restart naturally based on log_disarmed should do // the trick: _rotate_pending = true; } } // this sensor is enabled if we should be logging at the moment bool AP_Logger_Backend::logging_enabled() const { if (hal.util->get_soft_armed() || _front.log_while_disarmed()) { return true; } return false; } void AP_Logger_Backend::Write_AP_Logger_Stats_File(const struct df_stats &_stats) { const struct log_DSF pkt { LOG_PACKET_HEADER_INIT(LOG_DF_FILE_STATS), time_us : AP_HAL::micros64(), dropped : _dropped, blocks : _stats.blocks, bytes : _stats.bytes, buf_space_min : _stats.buf_space_min, buf_space_max : _stats.buf_space_max, buf_space_avg : (_stats.blocks) ? (_stats.buf_space_sigma / _stats.blocks) : 0, }; WriteBlock(&pkt, sizeof(pkt)); } void AP_Logger_Backend::df_stats_gather(const uint16_t bytes_written, uint32_t space_remaining) { if (space_remaining < stats.buf_space_min) { stats.buf_space_min = space_remaining; } if (space_remaining > stats.buf_space_max) { stats.buf_space_max = space_remaining; } stats.buf_space_sigma += space_remaining; stats.bytes += bytes_written; _log_file_size_bytes += bytes_written; stats.blocks++; } void AP_Logger_Backend::df_stats_clear() { memset(&stats, '\0', sizeof(stats)); stats.buf_space_min = -1; } void AP_Logger_Backend::df_stats_log() { Write_AP_Logger_Stats_File(stats); df_stats_clear(); }