#include "Sub.h" // enable_motor_output() - enable and output lowest possible value to motors void Sub::enable_motor_output() { motors.output_min(); } // init_arm_motors - performs arming process including initialisation of barometer and gyros // returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure bool Sub::init_arm_motors(AP_Arming::ArmingMethod method) { static bool in_arm_motors = false; // exit immediately if already in this function if (in_arm_motors) { return false; } in_arm_motors = true; if (!arming.pre_arm_checks(true)) { AP_Notify::events.arming_failed = true; in_arm_motors = false; return false; } // let dataflash know that we're armed (it may open logs e.g.) AP::logger().set_vehicle_armed(true); // disable cpu failsafe because initialising everything takes a while mainloop_failsafe_disable(); // notify that arming will occur (we do this early to give plenty of warning) AP_Notify::flags.armed = true; // call notify update a few times to ensure the message gets out for (uint8_t i=0; i<=10; i++) { notify.update(); } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs().send_text(MAV_SEVERITY_INFO, "Arming motors"); #endif initial_armed_bearing = ahrs.yaw_sensor; if (!ahrs.home_is_set()) { // Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home) // Always use absolute altitude for ROV // ahrs.resetHeightDatum(); // Log_Write_Event(DATA_EKF_ALT_RESET); } else if (ahrs.home_is_set() && !ahrs.home_is_locked()) { // Reset home position if it has already been set before (but not locked) set_home_to_current_location(false); } // enable gps velocity based centrefugal force compensation ahrs.set_correct_centrifugal(true); hal.util->set_soft_armed(true); // enable output to motors enable_motor_output(); // finally actually arm the motors motors.armed(true); // log arming to dataflash Log_Write_Event(DATA_ARMED); // log flight mode in case it was changed while vehicle was disarmed logger.Write_Mode(control_mode, control_mode_reason); // reenable failsafe mainloop_failsafe_enable(); // perf monitor ignores delay due to arming scheduler.perf_info.ignore_this_loop(); // flag exiting this function in_arm_motors = false; // return success return true; } // init_disarm_motors - disarm motors void Sub::init_disarm_motors() { // return immediately if we are already disarmed if (!motors.armed()) { return; } #if CONFIG_HAL_BOARD == HAL_BOARD_SITL gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors"); #endif // save compass offsets learned by the EKF if enabled if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) { for (uint8_t i=0; iset_soft_armed(false); // clear input holds clear_input_hold(); } // motors_output - send output to motors library which will adjust and send to ESCs and servos void Sub::motors_output() { // check if we are performing the motor test if (ap.motor_test) { verify_motor_test(); } else { motors.set_interlock(true); motors.output(); } } // Initialize new style motor test // Perform checks to see if it is ok to begin the motor test // Returns true if motor test has begun bool Sub::init_motor_test() { uint32_t tnow = AP_HAL::millis(); // Ten second cooldown period required with no do_set_motor requests required // after failure. if (tnow < last_do_motor_test_fail_ms + 10000 && last_do_motor_test_fail_ms > 0) { gcs().send_text(MAV_SEVERITY_CRITICAL, "10 second cool down required"); } // check if safety switch has been pushed if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { gcs().send_text(MAV_SEVERITY_CRITICAL,"Disarm hardware safety switch before testing motors."); return false; } // Make sure we are on the ground if (!motors.armed()) { gcs().send_text(MAV_SEVERITY_WARNING, "Arm motors before testing motors."); return false; } enable_motor_output(); // set all motor outputs to zero ap.motor_test = true; return true; } // Verify new style motor test // The motor test will fail if the interval between received // MAV_CMD_DO_SET_MOTOR requests exceeds a timeout period // Returns true if it is ok to proceed with new style motor test bool Sub::verify_motor_test() { bool pass = true; // Require at least 2 Hz incoming do_set_motor requests if (AP_HAL::millis() > last_do_motor_test_ms + 500) { gcs().send_text(MAV_SEVERITY_WARNING, "Motor test timed out!"); pass = false; } if (!pass) { ap.motor_test = false; motors.armed(false); // disarm motors last_do_motor_test_fail_ms = AP_HAL::millis(); return false; } return true; } bool Sub::handle_do_motor_test(mavlink_command_long_t command) { last_do_motor_test_ms = AP_HAL::millis(); // If we are not already testing motors, initialize test if(!ap.motor_test) { if (!init_motor_test()) { gcs().send_text(MAV_SEVERITY_WARNING, "motor test initialization failed!"); return false; // init fail } } float motor_number = command.param1; float throttle_type = command.param2; float throttle = command.param3; // float timeout_s = command.param4; // not used // float motor_count = command.param5; // not used float test_type = command.param6; if (!is_equal(test_type, (float)MOTOR_TEST_ORDER_BOARD)) { gcs().send_text(MAV_SEVERITY_WARNING, "bad test type %0.2f", (double)test_type); return false; // test type not supported here } if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PILOT)) { gcs().send_text(MAV_SEVERITY_WARNING, "bad throttle type %0.2f", (double)throttle_type); return false; // throttle type not supported here } if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PWM)) { return motors.output_test_num(motor_number, throttle); // true if motor output is set } if (is_equal(throttle_type, (float)MOTOR_TEST_THROTTLE_PERCENT)) { throttle = constrain_float(throttle, 0.0f, 100.0f); throttle = channel_throttle->get_radio_min() + throttle / 100.0f * (channel_throttle->get_radio_max() - channel_throttle->get_radio_min()); return motors.output_test_num(motor_number, throttle); // true if motor output is set } return false; } // translate wpnav roll/pitch outputs to lateral/forward void Sub::translate_wpnav_rp(float &lateral_out, float &forward_out) { // get roll and pitch targets in centidegrees int32_t lateral = wp_nav.get_roll(); int32_t forward = -wp_nav.get_pitch(); // output is reversed // constrain target forward/lateral values // The outputs of wp_nav.get_roll and get_pitch should already be constrained to these values lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max); forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max); // Normalize lateral_out = (float)lateral/(float)aparm.angle_max; forward_out = (float)forward/(float)aparm.angle_max; } // translate wpnav roll/pitch outputs to lateral/forward void Sub::translate_circle_nav_rp(float &lateral_out, float &forward_out) { // get roll and pitch targets in centidegrees int32_t lateral = circle_nav.get_roll(); int32_t forward = -circle_nav.get_pitch(); // output is reversed // constrain target forward/lateral values lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max); forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max); // Normalize lateral_out = (float)lateral/(float)aparm.angle_max; forward_out = (float)forward/(float)aparm.angle_max; } // translate pos_control roll/pitch outputs to lateral/forward void Sub::translate_pos_control_rp(float &lateral_out, float &forward_out) { // get roll and pitch targets in centidegrees int32_t lateral = pos_control.get_roll(); int32_t forward = -pos_control.get_pitch(); // output is reversed // constrain target forward/lateral values lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max); forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max); // Normalize lateral_out = (float)lateral/(float)aparm.angle_max; forward_out = (float)forward/(float)aparm.angle_max; }