/* ADS7844 register emulation Code by Andrew Tridgell November 2011 */ #ifndef _SITL_ADC_H #define _SITL_ADC_H #include #include static const float vibration_level = 2.0; static const float drift_speed = 1.0; static const float drift_level = 1.0; // order zgyro, xgyro, ygyro, temp, xacc, yacc, zacc, aspd static const float noise_scale[8] = { 150, 150, 150, 0, 400, 400, 400, 0 }; static const float noise_offset[8]= { 0, 0, 0, 0, 0, 0, 0, 0 }; static const float drift_rate[8] = { 0.7, 1.0, 0.5, 0, 0, 0, 0, 0 }; static const float base_noise = 2; // generate a random float between -1 and 1 static double rand_float(void) { float ret = ((unsigned)random()) % 2000000; return (ret - 1.0e6) / 1.0e6; } static inline float gyro_drift(uint8_t chan) { if (drift_rate[chan] * drift_level == 0.0) { return 0; } extern long unsigned int micros(void); double period = 10*drift_rate[chan] * drift_speed; double minutes = fmod(micros() / 60.0e6, period); if (minutes < period/2) { return minutes * drift_level; } return (period - minutes) * drift_level; } static inline float noise_generator(uint8_t chan) { extern float sitl_motor_speed[4]; uint8_t i; float noise = 0; uint8_t noise_count=0; extern long unsigned int micros(void); for (i=0; i<4; i++) { if (sitl_motor_speed[i] > 0.0) { float n = rand_float() * noise_scale[chan] * vibration_level; //double t = micros() / 1.0e6; //float freq = (rand_float() + 1.0) * sitl_motor_speed[i]; //noise += sin(fmod(t * freq * 2 * M_PI + i, //2*M_PI)) * n; noise += n + noise_offset[chan]; noise_count++; } } if (noise_count == 0) { return rand_float() * base_noise * vibration_level; } return gyro_drift(chan) + noise/noise_count; } // this implements the UDR2 register struct ADC_UDR2 { uint16_t value, next_value; uint8_t idx; float channels[8]; ADC_UDR2() { // constructor for (uint8_t i=0; i<8; i++) { channels[i] = 0xFFFF; } value = next_value = 0; idx = 0; } /* assignment of UDR2 selects which ADC channel to output next */ ADC_UDR2& operator=(uint8_t cmd) { float next_analog; uint8_t chan; switch (cmd) { case 0x87: chan = 0; break; case 0xC7: chan = 1; break; case 0x97: chan = 2; break; case 0xD7: chan = 3; break; case 0xA7: chan = 4; break; case 0xE7: chan = 5; break; case 0xB7: chan = 6; break; case 0xF7: chan = 7; break; case 0: default: return *this; } next_analog = channels[chan]; idx = 1; next_analog += noise_generator(chan) + 0.5; if (next_analog > 0xFFF) next_analog = 0xFFF; if (next_analog < 0) next_analog = 0; next_value = ((unsigned)next_analog) << 3; return *this; } /* read from UDR2 fetches a byte from the channel */ operator int() { uint8_t ret; if (idx & 1) { ret = (value&0xFF); value = next_value; } else { ret = (value>>8); } idx ^= 1; return ret; } /* interface to set a channel value from SITL */ void set(uint8_t i, float v) { channels[i] = v; } }; #endif // _SITL_ADC_H