/* implement protocol for controlling an IO microcontroller For bootstrapping this will initially implement the px4io protocol, but will later move to an ArduPilot specific protocol */ #include "AP_IOMCU.h" #if HAL_WITH_IO_MCU #include <AP_Math/AP_Math.h> #include <AP_Math/crc.h> #include <AP_BoardConfig/AP_BoardConfig.h> #include <AP_ROMFS/AP_ROMFS.h> #include <SRV_Channel/SRV_Channel.h> #include <RC_Channel/RC_Channel.h> #include <AP_RCProtocol/AP_RCProtocol.h> #include <AP_InternalError/AP_InternalError.h> #include <AP_Logger/AP_Logger.h> #include <AP_Arming/AP_Arming.h> #include <AP_BLHeli/AP_BLHeli.h> #include <ch.h> extern const AP_HAL::HAL &hal; // pending IO events to send, used as an event mask enum ioevents { IOEVENT_INIT=1, IOEVENT_SEND_PWM_OUT, IOEVENT_FORCE_SAFETY_OFF, IOEVENT_FORCE_SAFETY_ON, IOEVENT_SET_ONESHOT_ON, IOEVENT_SET_BRUSHED_ON, IOEVENT_SET_RATES, IOEVENT_ENABLE_SBUS, IOEVENT_SET_HEATER_TARGET, IOEVENT_SET_DEFAULT_RATE, IOEVENT_SET_SAFETY_MASK, IOEVENT_MIXING, IOEVENT_GPIO, IOEVENT_SET_OUTPUT_MODE, IOEVENT_SET_DSHOT_PERIOD, IOEVENT_SET_CHANNEL_MASK, IOEVENT_DSHOT, IOEVENT_PROFILED, }; // max number of consecutve protocol failures we accept before raising // an error #define IOMCU_MAX_REPEATED_FAILURES 20 #ifndef AP_IOMCU_FORCE_ENABLE_HEATER #define AP_IOMCU_FORCE_ENABLE_HEATER 0 #endif AP_IOMCU::AP_IOMCU(AP_HAL::UARTDriver &_uart) : uart(_uart) { singleton = this; } #define IOMCU_DEBUG_ENABLE 0 #if IOMCU_DEBUG_ENABLE #include <stdio.h> #define debug(fmt, args ...) do {printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0) #else #define debug(fmt, args ...) #endif AP_IOMCU *AP_IOMCU::singleton; /* initialise library, starting thread */ void AP_IOMCU::init(void) { // uart runs at 1.5MBit uart.begin(1500*1000, 128, 128); uart.set_unbuffered_writes(true); #if IOMCU_DEBUG_ENABLE crc_is_ok = true; #else AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton(); if ((!boardconfig || boardconfig->io_enabled() == 1) && !hal.util->was_watchdog_reset()) { check_crc(); } else { crc_is_ok = true; } #endif #if AP_IOMCU_PROFILED_SUPPORT_ENABLED use_safety_as_led = boardconfig->use_safety_as_led(); #endif if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_IOMCU::thread_main, void), "IOMCU", 1024, AP_HAL::Scheduler::PRIORITY_BOOST, 1)) { AP_HAL::panic("Unable to allocate IOMCU thread"); } initialised = true; } /* handle event failure */ void AP_IOMCU::event_failed(uint32_t event_mask) { // wait 0.5ms then retry hal.scheduler->delay_microseconds(500); chEvtSignal(thread_ctx, event_mask); } /* main IO thread loop */ void AP_IOMCU::thread_main(void) { thread_ctx = chThdGetSelfX(); chEvtSignal(thread_ctx, initial_event_mask); uart.begin(1500*1000, 128, 128); uart.set_unbuffered_writes(true); #if HAL_WITH_IO_MCU_BIDIR_DSHOT uint16_t erpm_period_ms = 10; // default 100Hz #if HAVE_AP_BLHELI_SUPPORT AP_BLHeli* blh = AP_BLHeli::get_singleton(); if (blh && blh->get_telemetry_rate() > 0) { erpm_period_ms = constrain_int16(1000 / blh->get_telemetry_rate(), 1, 1000); } #endif #endif trigger_event(IOEVENT_INIT); while (!do_shutdown) { // check if we have lost contact with the IOMCU const uint32_t now_ms = AP_HAL::millis(); if (last_reg_access_ms != 0 && now_ms - last_reg_access_ms > 1000) { INTERNAL_ERROR(AP_InternalError::error_t::iomcu_reset); last_reg_access_ms = 0; } eventmask_t mask = chEvtWaitAnyTimeout(~0, chTimeMS2I(10)); // check for pending IO events if (mask & EVENT_MASK(IOEVENT_SEND_PWM_OUT)) { send_servo_out(); } mask &= ~EVENT_MASK(IOEVENT_SEND_PWM_OUT); if (mask & EVENT_MASK(IOEVENT_INIT)) { // get protocol version if (!read_registers(PAGE_CONFIG, 0, sizeof(config)/2, (uint16_t *)&config)) { event_failed(mask); continue; } is_chibios_backend = (config.protocol_version == IOMCU_PROTOCOL_VERSION && config.protocol_version2 == IOMCU_PROTOCOL_VERSION2); DEV_PRINTF("IOMCU: 0x%lx\n", config.mcuid); // set IO_ARM_OK and clear FMU_ARMED if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_ARMING, P_SETUP_ARMING_FMU_ARMED, P_SETUP_ARMING_IO_ARM_OK | P_SETUP_ARMING_RC_HANDLING_DISABLED)) { event_failed(mask); continue; } #if AP_IOMCU_FORCE_ENABLE_HEATER if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0, P_SETUP_FEATURES_HEATER)) { event_failed(mask); continue; } #endif } mask &= ~EVENT_MASK(IOEVENT_INIT); if (mask & EVENT_MASK(IOEVENT_MIXING)) { if (!write_registers(PAGE_MIXING, 0, sizeof(mixing)/2, (const uint16_t *)&mixing)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_MIXING); if (mask & EVENT_MASK(IOEVENT_FORCE_SAFETY_OFF)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_FORCE_SAFETY_OFF, FORCE_SAFETY_MAGIC)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_FORCE_SAFETY_OFF); if (mask & EVENT_MASK(IOEVENT_FORCE_SAFETY_ON)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_FORCE_SAFETY_ON, FORCE_SAFETY_MAGIC)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_FORCE_SAFETY_ON); if (mask & EVENT_MASK(IOEVENT_SET_RATES)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_ALTRATE, rate.freq) || !write_register(PAGE_SETUP, PAGE_REG_SETUP_PWM_RATE_MASK, rate.chmask)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_RATES); if (mask & EVENT_MASK(IOEVENT_ENABLE_SBUS)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_SBUS_RATE, rate.sbus_rate_hz) || !modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0, P_SETUP_FEATURES_SBUS1_OUT)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_ENABLE_SBUS); if (mask & EVENT_MASK(IOEVENT_SET_HEATER_TARGET)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_HEATER_DUTY_CYCLE, heater_duty_cycle)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_HEATER_TARGET); if (mask & EVENT_MASK(IOEVENT_SET_DEFAULT_RATE)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_DEFAULTRATE, rate.default_freq)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_DEFAULT_RATE); if (mask & EVENT_MASK(IOEVENT_SET_DSHOT_PERIOD)) { if (!write_registers(PAGE_SETUP, PAGE_REG_SETUP_DSHOT_PERIOD, sizeof(dshot_rate)/2, (const uint16_t *)&dshot_rate)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_DSHOT_PERIOD); if (mask & EVENT_MASK(IOEVENT_SET_ONESHOT_ON)) { if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0, P_SETUP_FEATURES_ONESHOT)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_ONESHOT_ON); if (mask & EVENT_MASK(IOEVENT_SET_BRUSHED_ON)) { if (!modify_register(PAGE_SETUP, PAGE_REG_SETUP_FEATURES, 0, P_SETUP_FEATURES_BRUSHED)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_BRUSHED_ON); if (mask & EVENT_MASK(IOEVENT_SET_OUTPUT_MODE)) { if (!write_registers(PAGE_SETUP, PAGE_REG_SETUP_OUTPUT_MODE, sizeof(mode_out)/2, (const uint16_t *)&mode_out)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_OUTPUT_MODE); if (mask & EVENT_MASK(IOEVENT_SET_CHANNEL_MASK)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_CHANNEL_MASK, pwm_out.channel_mask)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_CHANNEL_MASK); if (mask & EVENT_MASK(IOEVENT_SET_SAFETY_MASK)) { if (!write_register(PAGE_SETUP, PAGE_REG_SETUP_IGNORE_SAFETY, pwm_out.safety_mask)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_SET_SAFETY_MASK); if (is_chibios_backend) { if (mask & EVENT_MASK(IOEVENT_GPIO)) { if (!write_registers(PAGE_GPIO, 0, sizeof(GPIO)/sizeof(uint16_t), (const uint16_t*)&GPIO)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_GPIO); } if (mask & EVENT_MASK(IOEVENT_DSHOT)) { page_dshot dshot; if (!dshot_command_queue.pop(dshot) || !write_registers(PAGE_DSHOT, 0, sizeof(dshot)/sizeof(uint16_t), (const uint16_t*)&dshot)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_DSHOT); #if AP_IOMCU_PROFILED_SUPPORT_ENABLED if (mask & EVENT_MASK(IOEVENT_PROFILED)) { if (!write_registers(PAGE_PROFILED, 0, sizeof(profiled)/sizeof(uint16_t), (const uint16_t*)&profiled)) { event_failed(mask); continue; } } mask &= ~EVENT_MASK(IOEVENT_PROFILED); #endif // check for regular timed events uint32_t now = AP_HAL::millis(); if (now - last_rc_read_ms > 20) { // read RC input at 50Hz read_rc_input(); last_rc_read_ms = AP_HAL::millis(); } if (now - last_status_read_ms > 50) { // read status at 20Hz read_status(); last_status_read_ms = AP_HAL::millis(); write_log(); } if (now - last_servo_read_ms > 50) { // read servo out at 20Hz read_servo(); last_servo_read_ms = AP_HAL::millis(); } #if HAL_WITH_IO_MCU_BIDIR_DSHOT if (AP_BoardConfig::io_dshot() && now - last_erpm_read_ms > erpm_period_ms) { // read erpm at configured rate. A more efficient scheme might be to // send erpm info back with the response from a PWM send, but that would // require a reworking of the registers model read_erpm(); last_erpm_read_ms = AP_HAL::millis(); } if (AP_BoardConfig::io_dshot() && now - last_telem_read_ms > 100) { // read dshot telemetry at 10Hz // needs to be at least 4Hz since each ESC updates at ~1Hz and we // are reading 4 at a time read_telem(); last_telem_read_ms = AP_HAL::millis(); } #endif // update options at the same rate that the iomcu updates the state if (now - last_safety_option_check_ms > 100) { update_safety_options(); last_safety_option_check_ms = now; } // update failsafe pwm if (pwm_out.failsafe_pwm_set != pwm_out.failsafe_pwm_sent) { uint8_t set = pwm_out.failsafe_pwm_set; if (write_registers(PAGE_FAILSAFE_PWM, 0, IOMCU_MAX_RC_CHANNELS, pwm_out.failsafe_pwm)) { pwm_out.failsafe_pwm_sent = set; } } send_rc_protocols(); } done_shutdown = true; } /* send servo output data */ void AP_IOMCU::send_servo_out() { #if 0 // simple method to test IO failsafe if (AP_HAL::millis() > 30000) { return; } #endif if (pwm_out.num_channels > 0) { uint8_t n = pwm_out.num_channels; if (rate.sbus_rate_hz == 0) { n = MIN(n, 8); } else { n = MIN(n, IOMCU_MAX_RC_CHANNELS); } uint32_t now = AP_HAL::micros(); if (now - last_servo_out_us >= 2000 || AP_BoardConfig::io_dshot()) { // don't send data at more than 500Hz except when using dshot which is more timing sensitive if (write_registers(PAGE_DIRECT_PWM, 0, n, pwm_out.pwm)) { last_servo_out_us = now; } } } } /* read RC input */ void AP_IOMCU::read_rc_input() { uint16_t *r = (uint16_t *)&rc_input; if (!read_registers(PAGE_RAW_RCIN, 0, sizeof(rc_input)/2, r)) { return; } if (rc_input.flags_failsafe && rc().option_is_enabled(RC_Channels::Option::IGNORE_FAILSAFE)) { rc_input.flags_failsafe = false; } if (rc_input.flags_rc_ok && !rc_input.flags_failsafe) { rc_last_input_ms = AP_HAL::millis(); } } #if HAL_WITH_IO_MCU_BIDIR_DSHOT /* read dshot erpm */ void AP_IOMCU::read_erpm() { uint16_t *r = (uint16_t *)&dshot_erpm; if (!read_registers(PAGE_RAW_DSHOT_ERPM, 0, sizeof(dshot_erpm)/2, r)) { return; } uint8_t motor_poles = 14; #if HAVE_AP_BLHELI_SUPPORT AP_BLHeli* blh = AP_BLHeli::get_singleton(); if (blh) { motor_poles = blh->get_motor_poles(); } #endif for (uint8_t i = 0; i < IOMCU_MAX_TELEM_CHANNELS/4; i++) { for (uint8_t j = 0; j < 4; j++) { const uint8_t esc_id = (i * 4 + j); if (dshot_erpm.update_mask & 1U<<esc_id) { update_rpm(esc_id, dshot_erpm.erpm[esc_id] * 200U / motor_poles, dshot_telem[i].error_rate[j] / 100.0); } } } } /* read dshot telemetry */ void AP_IOMCU::read_telem() { struct page_dshot_telem* telem = &dshot_telem[esc_group]; uint16_t *r = (uint16_t *)telem; iopage page = PAGE_RAW_DSHOT_TELEM_1_4; switch (esc_group) { #if IOMCU_MAX_TELEM_CHANNELS > 4 case 1: page = PAGE_RAW_DSHOT_TELEM_5_8; break; #endif default: break; } if (!read_registers(page, 0, sizeof(page_dshot_telem)/2, r)) { return; } for (uint i = 0; i<4; i++) { TelemetryData t { .temperature_cdeg = int16_t(telem->temperature_cdeg[i]), .voltage = float(telem->voltage_cvolts[i]) * 0.01, .current = float(telem->current_camps[i]) * 0.01, #if AP_EXTENDED_DSHOT_TELEM_V2_ENABLED .edt2_status = telem->edt2_status[i], .edt2_stress = telem->edt2_stress[i], #endif }; update_telem_data(esc_group * 4 + i, t, telem->types[i]); } esc_group = (esc_group + 1) % (IOMCU_MAX_TELEM_CHANNELS / 4); } #endif /* read status registers */ void AP_IOMCU::read_status() { uint16_t *r = (uint16_t *)®_status; if (!read_registers(PAGE_STATUS, 0, sizeof(reg_status)/2, r)) { read_status_errors++; if (read_status_errors == 20 && last_iocmu_timestamp_ms != 0) { // the IOMCU has stopped responding to status requests INTERNAL_ERROR(AP_InternalError::error_t::iomcu_reset); } return; } if (read_status_ok == 0) { // reset error count on first good read read_status_errors = 0; } read_status_ok++; check_iomcu_reset(); if (reg_status.flag_safety_off == 0) { // if the IOMCU is indicating that safety is on, then force a // re-check of the safety options. This copes with a IOMCU reset last_safety_options = 0xFFFF; // also check if the safety should be definately off. AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton(); if (!boardconfig) { return; } uint16_t options = boardconfig->get_safety_button_options(); if (safety_forced_off && (options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON) == 0) { // the safety has been forced off, and the user has asked // that the button can never be used, so there should be // no way for the safety to be on except a IOMCU // reboot. Force safety off again force_safety_off(); } } } void AP_IOMCU::write_log() { uint32_t now = AP_HAL::millis(); if (now - last_log_ms >= 1000U) { last_log_ms = now; #if HAL_LOGGING_ENABLED if (AP_Logger::get_singleton()) { // @LoggerMessage: IOMC // @Description: IOMCU diagnostic information // @Field: TimeUS: Time since system startup // @Field: RSErr: Status Read error count (zeroed on successful read) // @Field: Mem: Free memory // @Field: TS: IOMCU uptime // @Field: NPkt: Number of packets received by IOMCU // @Field: Nerr: Protocol failures on MCU side // @Field: Nerr2: Reported number of failures on IOMCU side // @Field: NDel: Number of delayed packets received by MCU AP::logger().WriteStreaming("IOMC", "TimeUS,RSErr,Mem,TS,NPkt,Nerr,Nerr2,NDel", "QHHIIIII", AP_HAL::micros64(), read_status_errors, reg_status.freemem, reg_status.timestamp_ms, reg_status.total_pkts, total_errors, reg_status.num_errors, num_delayed); } #endif // HAL_LOGGING_ENABLED #if IOMCU_DEBUG_ENABLE static uint32_t last_io_print; if (now - last_io_print >= 5000) { last_io_print = now; debug("t=%lu num=%lu mem=%u mstack=%u pstack=%u terr=%lu nerr=%lu crc=%u opcode=%u rd=%u wr=%u ur=%u ndel=%lu\n", now, reg_status.total_pkts, reg_status.freemem, reg_status.freemstack, reg_status.freepstack, total_errors, reg_status.num_errors, reg_status.err_crc, reg_status.err_bad_opcode, reg_status.err_read, reg_status.err_write, reg_status.err_uart, num_delayed); } #endif // IOMCU_DEBUG_ENABLE } } /* read servo output values */ void AP_IOMCU::read_servo() { if (pwm_out.num_channels > 0) { read_registers(PAGE_SERVOS, 0, pwm_out.num_channels, pwm_in.pwm); } } /* discard any pending input */ void AP_IOMCU::discard_input(void) { uart.discard_input(); } /* write a packet, retrying as needed */ size_t AP_IOMCU::write_wait(const uint8_t *pkt, uint8_t len) { uint8_t wait_count = 5; size_t ret; do { ret = uart.write(pkt, len); if (ret == 0) { hal.scheduler->delay_microseconds(100); num_delayed++; } } while (ret == 0 && wait_count--); return ret; } /* read count 16 bit registers */ bool AP_IOMCU::read_registers(uint8_t page, uint8_t offset, uint8_t count, uint16_t *regs) { while (count > PKT_MAX_REGS) { if (!read_registers(page, offset, PKT_MAX_REGS, regs)) { return false; } offset += PKT_MAX_REGS; count -= PKT_MAX_REGS; regs += PKT_MAX_REGS; } IOPacket pkt; discard_input(); memset(&pkt.regs[0], 0, count*2); pkt.code = CODE_READ; pkt.count = count; pkt.page = page; pkt.offset = offset; pkt.crc = 0; uint8_t pkt_size = pkt.get_size(); if (is_chibios_backend) { /* the original read protocol is a bit strange, as it unnecessarily sends the same size packet that it expects to receive. This means reading a large number of registers wastes a lot of serial bandwidth. We avoid this overhead when we know we are talking to a ChibiOS backend */ pkt_size = 4; } pkt.crc = crc_crc8((const uint8_t *)&pkt, pkt_size); size_t ret = write_wait((uint8_t *)&pkt, pkt_size); if (ret != pkt_size) { debug("write failed1 %u %u %u\n", unsigned(pkt_size), page, offset); protocol_fail_count++; return false; } // wait for the expected number of reply bytes or timeout if (!uart.wait_timeout(count*2+4, 10)) { debug("t=%lu timeout read page=%u offset=%u count=%u avail=%u\n", AP_HAL::millis(), page, offset, count, uart.available()); protocol_fail_count++; return false; } uint8_t *b = (uint8_t *)&pkt; uint8_t n = uart.available(); if (n < offsetof(struct IOPacket, regs)) { debug("t=%lu small pkt %u\n", AP_HAL::millis(), n); protocol_fail_count++; return false; } if (pkt.get_size() != n) { debug("t=%lu bad len %u %u\n", AP_HAL::millis(), n, pkt.get_size()); protocol_fail_count++; return false; } uart.read(b, MIN(n, sizeof(pkt))); uint8_t got_crc = pkt.crc; pkt.crc = 0; uint8_t expected_crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size()); if (got_crc != expected_crc) { debug("t=%lu bad crc %02x should be %02x n=%u %u/%u/%u\n", AP_HAL::millis(), got_crc, expected_crc, n, page, offset, count); protocol_fail_count++; return false; } if (pkt.code != CODE_SUCCESS) { debug("bad code %02x read %u/%u/%u\n", pkt.code, page, offset, count); protocol_fail_count++; return false; } if (pkt.count < count) { debug("bad count %u read %u/%u/%u n=%u\n", pkt.count, page, offset, count, n); protocol_fail_count++; return false; } memcpy(regs, pkt.regs, count*2); if (protocol_fail_count > IOMCU_MAX_REPEATED_FAILURES) { handle_repeated_failures(); } total_errors += protocol_fail_count; protocol_fail_count = 0; protocol_count++; last_reg_access_ms = AP_HAL::millis(); return true; } /* write count 16 bit registers */ bool AP_IOMCU::write_registers(uint8_t page, uint8_t offset, uint8_t count, const uint16_t *regs) { // The use of offset is very, very evil - it can either be a command within the page // or a genuine offset, offsets within PAGE_SETUP are assumed to be commands, otherwise to be an // actual offset while (page != PAGE_SETUP && count > PKT_MAX_REGS) { if (!write_registers(page, offset, PKT_MAX_REGS, regs)) { return false; } offset += PKT_MAX_REGS; count -= PKT_MAX_REGS; regs += PKT_MAX_REGS; } IOPacket pkt; discard_input(); memset(&pkt.regs[0], 0, count*2); pkt.code = CODE_WRITE; pkt.count = count; pkt.page = page; pkt.offset = offset; pkt.crc = 0; memcpy(pkt.regs, regs, 2*count); pkt.crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size()); const uint8_t pkt_size = pkt.get_size(); size_t ret = write_wait((uint8_t *)&pkt, pkt_size); if (ret != pkt_size) { debug("write failed2 %u %u %u %u\n", pkt_size, page, offset, ret); protocol_fail_count++; return false; } // wait for the expected number of reply bytes or timeout if (!uart.wait_timeout(4, 10)) { debug("no reply for %u/%u/%u\n", page, offset, count); protocol_fail_count++; return false; } uint8_t *b = (uint8_t *)&pkt; uint8_t n = uart.available(); for (uint8_t i=0; i<n; i++) { if (i < sizeof(pkt)) { b[i] = uart.read(); } } if (pkt.code != CODE_SUCCESS) { debug("bad code %02x write %u/%u/%u %02x/%02x n=%u\n", pkt.code, page, offset, count, pkt.page, pkt.offset, n); protocol_fail_count++; return false; } uint8_t got_crc = pkt.crc; pkt.crc = 0; uint8_t expected_crc = crc_crc8((const uint8_t *)&pkt, pkt.get_size()); if (got_crc != expected_crc) { debug("bad crc %02x should be %02x\n", got_crc, expected_crc); protocol_fail_count++; return false; } if (protocol_fail_count > IOMCU_MAX_REPEATED_FAILURES) { handle_repeated_failures(); } total_errors += protocol_fail_count; protocol_fail_count = 0; protocol_count++; last_reg_access_ms = AP_HAL::millis(); return true; } // modify a single register bool AP_IOMCU::modify_register(uint8_t page, uint8_t offset, uint16_t clearbits, uint16_t setbits) { uint16_t v = 0; if (!read_registers(page, offset, 1, &v)) { return false; } uint16_t v2 = (v & ~clearbits) | setbits; if (v2 == v) { return true; } return write_registers(page, offset, 1, &v2); } void AP_IOMCU::write_channel(uint8_t chan, uint16_t pwm) { if (chan >= IOMCU_MAX_RC_CHANNELS) { // could be SBUS out return; } if (chan >= pwm_out.num_channels) { pwm_out.num_channels = chan+1; } pwm_out.pwm[chan] = pwm; if (!corked) { push(); } } // trigger an ioevent void AP_IOMCU::trigger_event(uint8_t event) { if (thread_ctx != nullptr) { chEvtSignal(thread_ctx, EVENT_MASK(event)); } else { // thread isn't started yet, trigger this event once it is started initial_event_mask |= EVENT_MASK(event); } } // get state of safety switch AP_HAL::Util::safety_state AP_IOMCU::get_safety_switch_state(void) const { return reg_status.flag_safety_off?AP_HAL::Util::SAFETY_ARMED:AP_HAL::Util::SAFETY_DISARMED; } // force safety on bool AP_IOMCU::force_safety_on(void) { trigger_event(IOEVENT_FORCE_SAFETY_ON); safety_forced_off = false; return true; } // force safety off void AP_IOMCU::force_safety_off(void) { trigger_event(IOEVENT_FORCE_SAFETY_OFF); safety_forced_off = true; } // read from one channel uint16_t AP_IOMCU::read_channel(uint8_t chan) { return pwm_in.pwm[chan]; } // cork output void AP_IOMCU::cork(void) { corked = true; } // push output void AP_IOMCU::push(void) { trigger_event(IOEVENT_SEND_PWM_OUT); corked = false; } // set output frequency void AP_IOMCU::set_freq(uint16_t chmask, uint16_t freq) { // ensure mask is legal for the timer layout for (uint8_t i=0; i<ARRAY_SIZE(ch_masks); i++) { if (chmask & ch_masks[i]) { chmask |= ch_masks[i]; } } rate.freq = freq; rate.chmask |= chmask; trigger_event(IOEVENT_SET_RATES); } // get output frequency uint16_t AP_IOMCU::get_freq(uint16_t chan) { if ((1U<<chan) & rate.chmask) { return rate.freq; } return rate.default_freq; } // enable SBUS out bool AP_IOMCU::enable_sbus_out(uint16_t rate_hz) { rate.sbus_rate_hz = rate_hz; trigger_event(IOEVENT_ENABLE_SBUS); return true; } /* check for new RC input */ bool AP_IOMCU::check_rcinput(uint32_t &last_frame_us, uint8_t &num_channels, uint16_t *channels, uint8_t max_chan) { if (last_frame_us != uint32_t(rc_last_input_ms * 1000U)) { num_channels = MIN(MIN(rc_input.count, IOMCU_MAX_RC_CHANNELS), max_chan); memcpy(channels, rc_input.pwm, num_channels*2); last_frame_us = uint32_t(rc_last_input_ms * 1000U); return true; } return false; } // set IMU heater target void AP_IOMCU::set_heater_duty_cycle(uint8_t duty_cycle) { heater_duty_cycle = duty_cycle; trigger_event(IOEVENT_SET_HEATER_TARGET); } // set default output rate void AP_IOMCU::set_default_rate(uint16_t rate_hz) { if (rate.default_freq != rate_hz) { rate.default_freq = rate_hz; trigger_event(IOEVENT_SET_DEFAULT_RATE); } } // setup for oneshot mode void AP_IOMCU::set_oneshot_mode(void) { trigger_event(IOEVENT_SET_ONESHOT_ON); rate.oneshot_enabled = true; } // setup for brushed mode void AP_IOMCU::set_brushed_mode(void) { trigger_event(IOEVENT_SET_BRUSHED_ON); rate.brushed_enabled = true; } #if HAL_DSHOT_ENABLED // directly set the dshot rate - period_us is the dshot tick period_us and drate is the number // of dshot ticks per main loop cycle. These values are calculated by RCOutput::set_dshot_rate() // if the backend is free running then then period_us is fixed at 1000us and drate is 0 void AP_IOMCU::set_dshot_period(uint16_t period_us, uint8_t drate) { dshot_rate.period_us = period_us; dshot_rate.rate = drate; trigger_event(IOEVENT_SET_DSHOT_PERIOD); } // set the dshot esc_type void AP_IOMCU::set_dshot_esc_type(AP_HAL::RCOutput::DshotEscType dshot_esc_type) { mode_out.esc_type = uint16_t(dshot_esc_type); trigger_event(IOEVENT_SET_OUTPUT_MODE); } // set output mode void AP_IOMCU::set_telem_request_mask(uint32_t mask) { page_dshot dshot { .telem_mask = uint16_t(mask) }; dshot_command_queue.push(dshot); trigger_event(IOEVENT_DSHOT); } void AP_IOMCU::send_dshot_command(uint8_t command, uint8_t chan, uint32_t command_timeout_ms, uint16_t repeat_count, bool priority) { page_dshot dshot { .command = command, .chan = chan, .command_timeout_ms = command_timeout_ms, .repeat_count = uint8_t(repeat_count), .priority = priority }; dshot_command_queue.push(dshot); trigger_event(IOEVENT_DSHOT); } #endif // set output mode void AP_IOMCU::set_output_mode(uint16_t mask, uint16_t mode) { mode_out.mask = mask; mode_out.mode = mode; trigger_event(IOEVENT_SET_OUTPUT_MODE); } // set output mode void AP_IOMCU::set_bidir_dshot_mask(uint16_t mask) { mode_out.bdmask = mask; trigger_event(IOEVENT_SET_OUTPUT_MODE); } // set reversible mask void AP_IOMCU::set_reversible_mask(uint16_t mask) { mode_out.reversible_mask = mask; trigger_event(IOEVENT_SET_OUTPUT_MODE); } AP_HAL::RCOutput::output_mode AP_IOMCU::get_output_mode(uint8_t& mask) const { mask = reg_status.rcout_mask; return AP_HAL::RCOutput::output_mode(reg_status.rcout_mode); } uint32_t AP_IOMCU::get_disabled_channels(uint32_t digital_mask) const { uint32_t dig_out = reg_status.rcout_mask & (digital_mask & 0xFF); if (dig_out > 0 && AP_HAL::RCOutput::is_dshot_protocol(AP_HAL::RCOutput::output_mode(reg_status.rcout_mode))) { return ~dig_out & 0xFF; } return 0; } // setup channels void AP_IOMCU::enable_ch(uint8_t ch) { if (!(pwm_out.channel_mask & (1U << ch))) { pwm_out.channel_mask |= (1U << ch); trigger_event(IOEVENT_SET_CHANNEL_MASK); } } void AP_IOMCU::disable_ch(uint8_t ch) { if (pwm_out.channel_mask & (1U << ch)) { pwm_out.channel_mask &= ~(1U << ch); trigger_event(IOEVENT_SET_CHANNEL_MASK); } } // handling of BRD_SAFETYOPTION parameter void AP_IOMCU::update_safety_options(void) { AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton(); if (!boardconfig) { return; } uint16_t desired_options = 0; uint16_t options = boardconfig->get_safety_button_options(); bool armed = hal.util->get_soft_armed(); if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_OFF)) { desired_options |= P_SETUP_ARMING_SAFETY_DISABLE_OFF; } if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_SAFETY_ON)) { desired_options |= P_SETUP_ARMING_SAFETY_DISABLE_ON; } if (!(options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_ARMED) && armed) { desired_options |= (P_SETUP_ARMING_SAFETY_DISABLE_ON | P_SETUP_ARMING_SAFETY_DISABLE_OFF); } // update armed state if (armed) { desired_options |= P_SETUP_ARMING_FMU_ARMED; } if (last_safety_options != desired_options) { uint16_t mask = (P_SETUP_ARMING_SAFETY_DISABLE_ON | P_SETUP_ARMING_SAFETY_DISABLE_OFF | P_SETUP_ARMING_FMU_ARMED); uint32_t bits_to_set = desired_options & mask; uint32_t bits_to_clear = (~desired_options) & mask; if (modify_register(PAGE_SETUP, PAGE_REG_SETUP_ARMING, bits_to_clear, bits_to_set)) { last_safety_options = desired_options; } } } // update enabled RC protocols mask void AP_IOMCU::send_rc_protocols() { const uint32_t v = rc().enabled_protocols(); if (last_rc_protocols == v) { return; } if (write_registers(PAGE_SETUP, PAGE_REG_SETUP_RC_PROTOCOLS, 2, (uint16_t *)&v)) { last_rc_protocols = v; } } /* check ROMFS firmware against CRC on IOMCU, and if incorrect then upload new firmware */ bool AP_IOMCU::check_crc(void) { // flash size minus 4k bootloader const uint32_t flash_size = 0x10000 - 0x1000; const char *path = AP_BoardConfig::io_dshot() ? dshot_fw_name : fw_name; fw = AP_ROMFS::find_decompress(path, fw_size); if (!fw) { DEV_PRINTF("failed to find %s\n", path); return false; } uint32_t crc = crc32_small(0, fw, fw_size); // pad CRC to max size for (uint32_t i=0; i<flash_size-fw_size; i++) { uint8_t b = 0xff; crc = crc32_small(crc, &b, 1); } uint32_t io_crc = 0; uint8_t tries = 32; while (tries--) { if (read_registers(PAGE_SETUP, PAGE_REG_SETUP_CRC, 2, (uint16_t *)&io_crc)) { break; } } if (io_crc == crc) { DEV_PRINTF("IOMCU: CRC ok\n"); crc_is_ok = true; AP_ROMFS::free(fw); fw = nullptr; return true; } else { DEV_PRINTF("IOMCU: CRC mismatch expected: 0x%X got: 0x%X\n", (unsigned)crc, (unsigned)io_crc); } const uint16_t magic = REBOOT_BL_MAGIC; write_registers(PAGE_SETUP, PAGE_REG_SETUP_REBOOT_BL, 1, &magic); // avoid internal error on fw upload delay last_reg_access_ms = 0; if (!upload_fw()) { AP_ROMFS::free(fw); fw = nullptr; AP_BoardConfig::config_error("Failed to update IO firmware"); } AP_ROMFS::free(fw); fw = nullptr; return false; } /* set the pwm to use when in FMU failsafe */ void AP_IOMCU::set_failsafe_pwm(uint16_t chmask, uint16_t period_us) { bool changed = false; for (uint8_t i=0; i<IOMCU_MAX_RC_CHANNELS; i++) { if (chmask & (1U<<i)) { if (pwm_out.failsafe_pwm[i] != period_us) { pwm_out.failsafe_pwm[i] = period_us; changed = true; } } } if (changed) { pwm_out.failsafe_pwm_set++; } } // set mask of channels that ignore safety state void AP_IOMCU::set_safety_mask(uint16_t chmask) { if (pwm_out.safety_mask != chmask) { pwm_out.safety_mask = chmask; trigger_event(IOEVENT_SET_SAFETY_MASK); } } /* check that IO is healthy. This should be used in arming checks */ bool AP_IOMCU::healthy(void) { return crc_is_ok && protocol_fail_count == 0 && !detected_io_reset && read_status_errors < read_status_ok/128U; } /* shutdown protocol, ready for reboot */ void AP_IOMCU::shutdown(void) { do_shutdown = true; while (!done_shutdown) { hal.scheduler->delay(1); } } /* reboot IOMCU */ void AP_IOMCU::soft_reboot(void) { const uint16_t magic = REBOOT_BL_MAGIC; write_registers(PAGE_SETUP, PAGE_REG_SETUP_REBOOT_BL, 1, &magic); } /* request bind on a DSM radio */ void AP_IOMCU::bind_dsm(uint8_t mode) { if (!is_chibios_backend || AP::arming().is_armed()) { // only with ChibiOS IO firmware, and disarmed return; } uint16_t reg = mode; write_registers(PAGE_SETUP, PAGE_REG_SETUP_DSM_BIND, 1, ®); } /* setup for mixing. This allows fixed wing aircraft to fly in manual mode if the FMU dies */ bool AP_IOMCU::setup_mixing(int8_t override_chan, float mixing_gain, uint16_t manual_rc_mask) { if (!is_chibios_backend) { return false; } bool changed = false; #define MIX_UPDATE(a,b) do { if ((a) != (b)) { a = b; changed = true; }} while (0) // update mixing structure, checking for changes for (uint8_t i=0; i<IOMCU_MAX_RC_CHANNELS; i++) { const SRV_Channel *c = SRV_Channels::srv_channel(i); if (!c) { continue; } MIX_UPDATE(mixing.servo_trim[i], c->get_trim()); MIX_UPDATE(mixing.servo_min[i], c->get_output_min()); MIX_UPDATE(mixing.servo_max[i], c->get_output_max()); MIX_UPDATE(mixing.servo_function[i], c->get_function()); MIX_UPDATE(mixing.servo_reversed[i], c->get_reversed()); } auto &xrc = rc(); // note that if not all of these channels are specified correctly // in parameters then these may be a "dummy" RC channel pointer. // In that case c->ch() will be zero. const RC_Channel *channels[] { &xrc.get_roll_channel(), &xrc.get_pitch_channel(), &xrc.get_throttle_channel(), &xrc.get_yaw_channel() }; for (uint8_t i=0; i<4; i++) { const auto *c = channels[i]; MIX_UPDATE(mixing.rc_channel[i], c->ch()); MIX_UPDATE(mixing.rc_min[i], c->get_radio_min()); MIX_UPDATE(mixing.rc_max[i], c->get_radio_max()); MIX_UPDATE(mixing.rc_trim[i], c->get_radio_trim()); MIX_UPDATE(mixing.rc_reversed[i], c->get_reverse()); // cope with reversible throttle if (i == 2 && c->get_type() == RC_Channel::ControlType::ANGLE) { MIX_UPDATE(mixing.throttle_is_angle, 1); } else { MIX_UPDATE(mixing.throttle_is_angle, 0); } } MIX_UPDATE(mixing.rc_chan_override, override_chan); MIX_UPDATE(mixing.mixing_gain, (uint16_t)(mixing_gain*1000)); MIX_UPDATE(mixing.manual_rc_mask, manual_rc_mask); // and enable MIX_UPDATE(mixing.enabled, 1); if (changed) { trigger_event(IOEVENT_MIXING); } return true; } /* return the RC protocol name */ const char *AP_IOMCU::get_rc_protocol(void) { if (!is_chibios_backend) { return nullptr; } return AP_RCProtocol::protocol_name_from_protocol((AP_RCProtocol::rcprotocol_t)rc_input.rc_protocol); } /* we have had a series of repeated protocol failures to the IOMCU. This may indicate that the IOMCU has been reset (possibly due to a watchdog). */ void AP_IOMCU::handle_repeated_failures(void) { if (protocol_count < 100) { // we're just starting up, ignore initial failures caused by // initial sync with IOMCU return; } INTERNAL_ERROR(AP_InternalError::error_t::iomcu_fail); } /* check for IOMCU reset (possibly due to a watchdog). */ void AP_IOMCU::check_iomcu_reset(void) { if (last_iocmu_timestamp_ms == 0) { // initialisation last_iocmu_timestamp_ms = reg_status.timestamp_ms; DEV_PRINTF("IOMCU startup\n"); return; } uint32_t dt_ms = reg_status.timestamp_ms - last_iocmu_timestamp_ms; #if IOMCU_DEBUG_ENABLE const uint32_t ts1 = last_iocmu_timestamp_ms; #endif // when we are in an expected delay allow for a larger time // delta. This copes with flash erase, such as bootloader update const uint32_t max_delay = hal.scheduler->in_expected_delay()?8000:500; last_iocmu_timestamp_ms = reg_status.timestamp_ms; if (dt_ms < max_delay) { // all OK last_safety_off = reg_status.flag_safety_off; return; } detected_io_reset = true; INTERNAL_ERROR(AP_InternalError::error_t::iomcu_reset); debug("IOMCU reset t=%u %u %u dt=%u\n", unsigned(AP_HAL::millis()), unsigned(ts1), unsigned(reg_status.timestamp_ms), unsigned(dt_ms)); bool have_forced_off = false; if (last_safety_off && !reg_status.flag_safety_off && AP::arming().is_armed()) { AP_BoardConfig *boardconfig = AP_BoardConfig::get_singleton(); uint16_t options = boardconfig?boardconfig->get_safety_button_options():0; if (safety_forced_off || (options & AP_BoardConfig::BOARD_SAFETY_OPTION_BUTTON_ACTIVE_ARMED) == 0) { // IOMCU has reset while armed with safety off - force it off // again so we can keep flying have_forced_off = true; force_safety_off(); } } if (!have_forced_off) { last_safety_off = reg_status.flag_safety_off; } // we need to ensure the mixer data and the rates are sent over to // the IOMCU if (mixing.enabled) { trigger_event(IOEVENT_MIXING); } trigger_event(IOEVENT_SET_RATES); trigger_event(IOEVENT_SET_DEFAULT_RATE); trigger_event(IOEVENT_SET_DSHOT_PERIOD); trigger_event(IOEVENT_SET_OUTPUT_MODE); trigger_event(IOEVENT_SET_CHANNEL_MASK); if (rate.oneshot_enabled) { trigger_event(IOEVENT_SET_ONESHOT_ON); } if (rate.brushed_enabled) { trigger_event(IOEVENT_SET_BRUSHED_ON); } if (rate.sbus_rate_hz) { trigger_event(IOEVENT_ENABLE_SBUS); } if (pwm_out.safety_mask) { trigger_event(IOEVENT_SET_SAFETY_MASK); } last_rc_protocols = 0; } // Check if pin number is valid and configured for GPIO bool AP_IOMCU::valid_GPIO_pin(uint8_t pin) const { // sanity check pin number if (!convert_pin_number(pin)) { return false; } // check pin is enabled as GPIO return ((GPIO.channel_mask & (1U << pin)) != 0); } // convert external pin numbers 101 to 108 to internal 0 to 7 bool AP_IOMCU::convert_pin_number(uint8_t& pin) const { if (pin < 101 || pin > 108) { return false; } pin -= 101; return true; } // set GPIO mask of channels setup for output void AP_IOMCU::set_GPIO_mask(uint8_t mask) { if (mask == GPIO.channel_mask) { return; } GPIO.channel_mask = mask; trigger_event(IOEVENT_GPIO); } // Get GPIO mask of channels setup for output uint8_t AP_IOMCU::get_GPIO_mask() const { return GPIO.channel_mask; } // write to a output pin void AP_IOMCU::write_GPIO(uint8_t pin, bool value) { if (!convert_pin_number(pin)) { return; } if (value == ((GPIO.output_mask & (1U << pin)) != 0)) { return; } if (value) { GPIO.output_mask |= (1U << pin); } else { GPIO.output_mask &= ~(1U << pin); } trigger_event(IOEVENT_GPIO); } // Read the last output value send to the GPIO pin // This is not a real read of the actual pin // This allows callers to check for state change uint8_t AP_IOMCU::read_virtual_GPIO(uint8_t pin) const { if (!convert_pin_number(pin)) { return 0; } return (GPIO.output_mask & (1U << pin)) != 0; } // toggle a output pin void AP_IOMCU::toggle_GPIO(uint8_t pin) { if (!convert_pin_number(pin)) { return; } GPIO.output_mask ^= (1U << pin); trigger_event(IOEVENT_GPIO); } #if AP_IOMCU_PROFILED_SUPPORT_ENABLED // set profiled R G B values void AP_IOMCU::set_profiled(uint8_t r, uint8_t g, uint8_t b) { if (!use_safety_as_led) { return; } if (r == profiled.red && g == profiled.green && b == profiled.blue) { return; } profiled.magic = PROFILED_ENABLE_MAGIC; profiled.red = r; profiled.green = g; profiled.blue = b; trigger_event(IOEVENT_PROFILED); } #endif namespace AP { AP_IOMCU *iomcu(void) { return AP_IOMCU::get_singleton(); } }; #endif // HAL_WITH_IO_MCU