/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#pragma once
#include "AP_GPS_config.h"
#if AP_GPS_ENABLED
#include
#include
#include
#include
#include
#include "GPS_detect_state.h"
#include
#include
#include
#include
#include
#define GPS_UNKNOWN_DOP UINT16_MAX // set unknown DOP's to maximum value, which is also correct for MAVLink
// the number of GPS leap seconds - copied into SIM_GPS.cpp
#define GPS_LEAPSECONDS_MILLIS 18000ULL
#define UNIX_OFFSET_MSEC (17000ULL * 86400ULL + 52ULL * 10ULL * AP_MSEC_PER_WEEK - GPS_LEAPSECONDS_MILLIS)
#ifndef GPS_MOVING_BASELINE
#define GPS_MOVING_BASELINE GPS_MAX_RECEIVERS>1
#endif
#if GPS_MOVING_BASELINE
#include "MovingBase.h"
#endif // GPS_MOVING_BASELINE
class AP_GPS_Backend;
class RTCM3_Parser;
/// @class AP_GPS
/// GPS driver main class
class AP_GPS
{
friend class AP_GPS_Blended;
friend class AP_GPS_ERB;
friend class AP_GPS_GSOF;
friend class AP_GPS_MAV;
friend class AP_GPS_MSP;
friend class AP_GPS_ExternalAHRS;
friend class AP_GPS_NMEA;
friend class AP_GPS_NOVA;
friend class AP_GPS_PX4;
friend class AP_GPS_SBF;
friend class AP_GPS_SBP;
friend class AP_GPS_SBP2;
friend class AP_GPS_SIRF;
friend class AP_GPS_UBLOX;
friend class AP_GPS_Backend;
friend class AP_GPS_DroneCAN;
public:
AP_GPS();
/* Do not allow copies */
CLASS_NO_COPY(AP_GPS);
static AP_GPS *get_singleton() {
return _singleton;
}
// allow threads to lock against GPS update
HAL_Semaphore &get_semaphore(void) {
return rsem;
}
// GPS driver types
enum GPS_Type {
GPS_TYPE_NONE = 0,
GPS_TYPE_AUTO = 1,
GPS_TYPE_UBLOX = 2,
// GPS_TYPE_MTK = 3, // driver removed
// GPS_TYPE_MTK19 = 4, // driver removed
GPS_TYPE_NMEA = 5,
GPS_TYPE_SIRF = 6,
GPS_TYPE_HIL = 7,
GPS_TYPE_SBP = 8,
GPS_TYPE_UAVCAN = 9,
GPS_TYPE_SBF = 10,
GPS_TYPE_GSOF = 11,
GPS_TYPE_ERB = 13,
GPS_TYPE_MAV = 14,
GPS_TYPE_NOVA = 15,
GPS_TYPE_HEMI = 16, // hemisphere NMEA
GPS_TYPE_UBLOX_RTK_BASE = 17,
GPS_TYPE_UBLOX_RTK_ROVER = 18,
GPS_TYPE_MSP = 19,
GPS_TYPE_ALLYSTAR = 20, // AllyStar NMEA
GPS_TYPE_EXTERNAL_AHRS = 21,
GPS_TYPE_UAVCAN_RTK_BASE = 22,
GPS_TYPE_UAVCAN_RTK_ROVER = 23,
GPS_TYPE_UNICORE_NMEA = 24,
GPS_TYPE_UNICORE_MOVINGBASE_NMEA = 25,
GPS_TYPE_SBF_DUAL_ANTENNA = 26,
#if HAL_SIM_GPS_ENABLED
GPS_TYPE_SITL = 100,
#endif
};
// convenience methods for working out what general type an instance is:
bool is_rtk_base(uint8_t instance) const;
bool is_rtk_rover(uint8_t instance) const;
// params for an instance:
class Params {
public:
// Constructor
Params(void);
AP_Enum type;
AP_Int8 gnss_mode;
AP_Int16 rate_ms; // this parameter should always be accessed using get_rate_ms()
AP_Vector3f antenna_offset;
AP_Int16 delay_ms;
AP_Int8 com_port;
#if HAL_ENABLE_DRONECAN_DRIVERS
AP_Int32 node_id;
AP_Int32 override_node_id;
#endif
#if GPS_MOVING_BASELINE
MovingBase mb_params;
#endif // GPS_MOVING_BASELINE
static const struct AP_Param::GroupInfo var_info[];
};
/// GPS status codes. These are kept aligned with MAVLink by
/// static_assert in AP_GPS.cpp
enum GPS_Status {
NO_GPS = 0, ///< No GPS connected/detected
NO_FIX = 1, ///< Receiving valid GPS messages but no lock
GPS_OK_FIX_2D = 2, ///< Receiving valid messages and 2D lock
GPS_OK_FIX_3D = 3, ///< Receiving valid messages and 3D lock
GPS_OK_FIX_3D_DGPS = 4, ///< Receiving valid messages and 3D lock with differential improvements
GPS_OK_FIX_3D_RTK_FLOAT = 5, ///< Receiving valid messages and 3D RTK Float
GPS_OK_FIX_3D_RTK_FIXED = 6, ///< Receiving valid messages and 3D RTK Fixed
};
// GPS navigation engine settings. Not all GPS receivers support
// this
enum GPS_Engine_Setting {
GPS_ENGINE_NONE = -1,
GPS_ENGINE_PORTABLE = 0,
GPS_ENGINE_STATIONARY = 2,
GPS_ENGINE_PEDESTRIAN = 3,
GPS_ENGINE_AUTOMOTIVE = 4,
GPS_ENGINE_SEA = 5,
GPS_ENGINE_AIRBORNE_1G = 6,
GPS_ENGINE_AIRBORNE_2G = 7,
GPS_ENGINE_AIRBORNE_4G = 8
};
// role for auto-config
enum GPS_Role {
GPS_ROLE_NORMAL,
GPS_ROLE_MB_BASE,
GPS_ROLE_MB_ROVER,
};
// GPS Covariance Types matching ROS2 sensor_msgs/msg/NavSatFix
enum class CovarianceType : uint8_t {
UNKNOWN = 0, ///< The GPS does not support any accuracy metrics
APPROXIMATED = 1, ///< The accuracy is approximated through metrics such as HDOP/VDOP
DIAGONAL_KNOWN = 2, ///< The diagonal (east, north, up) components of covariance are reported by the GPS
KNOWN = 3, ///< The full covariance array is reported by the GPS
};
/*
The GPS_State structure is filled in by the backend driver as it
parses each message from the GPS.
*/
struct GPS_State {
uint8_t instance; // the instance number of this GPS
// all the following fields must all be filled by the backend driver
GPS_Status status; ///< driver fix status
uint32_t time_week_ms; ///< GPS time (milliseconds from start of GPS week)
uint16_t time_week; ///< GPS week number
Location location; ///< last fix location
float ground_speed; ///< ground speed in m/s
float ground_course; ///< ground course in degrees, wrapped 0-360
float gps_yaw; ///< GPS derived yaw information, if available (degrees)
uint32_t gps_yaw_time_ms; ///< timestamp of last GPS yaw reading
bool gps_yaw_configured; ///< GPS is configured to provide yaw
uint16_t hdop; ///< horizontal dilution of precision, scaled by a factor of 100 (155 means the HDOP value is 1.55)
uint16_t vdop; ///< vertical dilution of precision, scaled by a factor of 100 (155 means the VDOP value is 1.55)
uint8_t num_sats; ///< Number of visible satellites
Vector3f velocity; ///< 3D velocity in m/s, in NED format
float speed_accuracy; ///< 3D velocity RMS accuracy estimate in m/s
float horizontal_accuracy; ///< horizontal RMS accuracy estimate in m
float vertical_accuracy; ///< vertical RMS accuracy estimate in m
float gps_yaw_accuracy; ///< heading accuracy of the GPS in degrees
bool have_vertical_velocity; ///< does GPS give vertical velocity? Set to true only once available.
bool have_speed_accuracy; ///< does GPS give speed accuracy? Set to true only once available.
bool have_horizontal_accuracy; ///< does GPS give horizontal position accuracy? Set to true only once available.
bool have_vertical_accuracy; ///< does GPS give vertical position accuracy? Set to true only once available.
bool have_gps_yaw; ///< does GPS give yaw? Set to true only once available.
bool have_gps_yaw_accuracy; ///< does the GPS give a heading accuracy estimate? Set to true only once available
float undulation; // NO_FIX) {
return NO_FIX;
}
return state[instance].status;
}
GPS_Status status(void) const {
return status(primary_instance);
}
// return a single human-presentable character representing the
// fix type. For space-constrained human-readable displays
char status_onechar(void) const {
switch (status()) {
case AP_GPS::NO_GPS:
return ' ';
case AP_GPS::NO_FIX:
return '-';
case AP_GPS::GPS_OK_FIX_2D:
return '2';
case AP_GPS::GPS_OK_FIX_3D:
return '3';
case AP_GPS::GPS_OK_FIX_3D_DGPS:
return '4';
case AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT:
return '5';
case AP_GPS::GPS_OK_FIX_3D_RTK_FIXED:
return '6';
}
// should never reach here; compiler flags guarantees this.
return '?';
}
// Query the highest status this GPS supports (always reports GPS_OK_FIX_3D for the blended GPS)
GPS_Status highest_supported_status(uint8_t instance) const WARN_IF_UNUSED;
// location of last fix
const Location &location(uint8_t instance) const {
return state[instance].location;
}
const Location &location() const {
return location(primary_instance);
}
// get the difference between WGS84 and AMSL. A positive value means
// the AMSL height is higher than WGS84 ellipsoid height
bool get_undulation(uint8_t instance, float &undulation) const;
// get the difference between WGS84 and AMSL. A positive value means
// the AMSL height is higher than WGS84 ellipsoid height
bool get_undulation(float &undulation) const {
return get_undulation(primary_instance, undulation);
}
// report speed accuracy
bool speed_accuracy(uint8_t instance, float &sacc) const;
bool speed_accuracy(float &sacc) const {
return speed_accuracy(primary_instance, sacc);
}
bool horizontal_accuracy(uint8_t instance, float &hacc) const;
bool horizontal_accuracy(float &hacc) const {
return horizontal_accuracy(primary_instance, hacc);
}
bool vertical_accuracy(uint8_t instance, float &vacc) const;
bool vertical_accuracy(float &vacc) const {
return vertical_accuracy(primary_instance, vacc);
}
CovarianceType position_covariance(const uint8_t instance, Matrix3f& cov) const WARN_IF_UNUSED;
// 3D velocity in NED format
const Vector3f &velocity(uint8_t instance) const {
return state[instance].velocity;
}
const Vector3f &velocity() const {
return velocity(primary_instance);
}
// ground speed in m/s
float ground_speed(uint8_t instance) const {
return state[instance].ground_speed;
}
float ground_speed() const {
return ground_speed(primary_instance);
}
// ground speed in cm/s
uint32_t ground_speed_cm(void) const {
return ground_speed() * 100;
}
// ground course in degrees
float ground_course(uint8_t instance) const {
return state[instance].ground_course;
}
float ground_course() const {
return ground_course(primary_instance);
}
// ground course in centi-degrees
int32_t ground_course_cd(uint8_t instance) const {
return ground_course(instance) * 100;
}
int32_t ground_course_cd() const {
return ground_course_cd(primary_instance);
}
// yaw in degrees if available
bool gps_yaw_deg(uint8_t instance, float &yaw_deg, float &accuracy_deg, uint32_t &time_ms) const;
bool gps_yaw_deg(float &yaw_deg, float &accuracy_deg, uint32_t &time_ms) const {
return gps_yaw_deg(primary_instance, yaw_deg, accuracy_deg, time_ms);
}
// number of locked satellites
uint8_t num_sats(uint8_t instance) const {
return state[instance].num_sats;
}
uint8_t num_sats() const {
return num_sats(primary_instance);
}
// GPS time of week in milliseconds
uint32_t time_week_ms(uint8_t instance) const {
return state[instance].time_week_ms;
}
uint32_t time_week_ms() const {
return time_week_ms(primary_instance);
}
// GPS week
uint16_t time_week(uint8_t instance) const {
return state[instance].time_week;
}
uint16_t time_week() const {
return time_week(primary_instance);
}
// horizontal dilution of precision
uint16_t get_hdop(uint8_t instance) const {
return state[instance].hdop;
}
uint16_t get_hdop() const {
return get_hdop(primary_instance);
}
// vertical dilution of precision
uint16_t get_vdop(uint8_t instance) const {
return state[instance].vdop;
}
uint16_t get_vdop() const {
return get_vdop(primary_instance);
}
// the time we got our last fix in system milliseconds. This is
// used when calculating how far we might have moved since that fix
uint32_t last_fix_time_ms(uint8_t instance) const {
return timing[instance].last_fix_time_ms;
}
uint32_t last_fix_time_ms(void) const {
return last_fix_time_ms(primary_instance);
}
// the time we last processed a message in milliseconds. This is
// used to indicate that we have new GPS data to process
uint32_t last_message_time_ms(uint8_t instance) const {
return timing[instance].last_message_time_ms;
}
uint32_t last_message_time_ms(void) const {
return last_message_time_ms(primary_instance);
}
// system time delta between the last two reported positions
uint16_t last_message_delta_time_ms(uint8_t instance) const {
return timing[instance].delta_time_ms;
}
uint16_t last_message_delta_time_ms(void) const {
return last_message_delta_time_ms(primary_instance);
}
// return true if the GPS supports vertical velocity values
bool have_vertical_velocity(uint8_t instance) const {
return state[instance].have_vertical_velocity;
}
bool have_vertical_velocity(void) const {
return have_vertical_velocity(primary_instance);
}
// return true if the GPS currently has yaw available
bool have_gps_yaw(uint8_t instance) const {
return !_force_disable_gps_yaw && state[instance].have_gps_yaw;
}
bool have_gps_yaw(void) const {
return have_gps_yaw(primary_instance);
}
// return true if the GPS is configured to provide yaw. This will
// be true if we expect the GPS to provide yaw, even if it
// currently is not able to provide yaw
bool have_gps_yaw_configured(uint8_t instance) const {
return state[instance].gps_yaw_configured;
}
// the expected lag (in seconds) in the position and velocity readings from the gps
// return true if the GPS hardware configuration is known or the lag parameter has been set manually
bool get_lag(uint8_t instance, float &lag_sec) const;
bool get_lag(float &lag_sec) const {
return get_lag(primary_instance, lag_sec);
}
// return a 3D vector defining the offset of the GPS antenna in meters relative to the body frame origin
const Vector3f &get_antenna_offset(uint8_t instance) const;
// lock out a GPS port, allowing another application to use the port
void lock_port(uint8_t instance, bool locked);
//MAVLink Status Sending
void send_mavlink_gps_raw(mavlink_channel_t chan);
void send_mavlink_gps2_raw(mavlink_channel_t chan);
void send_mavlink_gps_rtk(mavlink_channel_t chan, uint8_t inst);
// Returns true if there is an unconfigured GPS, and provides the instance number of the first non configured GPS
bool first_unconfigured_gps(uint8_t &instance) const WARN_IF_UNUSED;
void broadcast_first_configuration_failure_reason(void) const;
// pre-arm check that all GPSs are close to each other. farthest distance between GPSs (in meters) is returned
bool all_consistent(float &distance) const;
// handle sending of initialisation strings to the GPS - only used by backends
void send_blob_start(uint8_t instance);
void send_blob_start(uint8_t instance, const char *_blob, uint16_t size);
void send_blob_update(uint8_t instance);
// return last fix time since the 1/1/1970 in microseconds
uint64_t time_epoch_usec(uint8_t instance) const;
uint64_t time_epoch_usec(void) const {
return time_epoch_usec(primary_instance);
}
uint64_t last_message_epoch_usec(uint8_t instance) const;
uint64_t last_message_epoch_usec() const {
return last_message_epoch_usec(primary_instance);
}
// convert GPS week and millis to unix epoch in ms
static uint64_t istate_time_to_epoch_ms(uint16_t gps_week, uint32_t gps_ms);
static const struct AP_Param::GroupInfo var_info[];
#if HAL_LOGGING_ENABLED
void Write_AP_Logger_Log_Startup_messages();
#endif
// indicate which bit in LOG_BITMASK indicates gps logging enabled
void set_log_gps_bit(uint32_t bit) { _log_gps_bit = bit; }
// report if the gps is healthy (this is defined as existing, an update at a rate greater than 4Hz,
// as well as any driver specific behaviour)
bool is_healthy(uint8_t instance) const;
bool is_healthy(void) const { return is_healthy(primary_instance); }
// returns true if all GPS instances have passed all final arming checks/state changes
bool prepare_for_arming(void);
// returns true if all GPS backend drivers are OK with the concept
// of the vehicle arming. this is for backends to be able to
// spout pre arm error messages
bool pre_arm_checks(char failure_msg[], uint16_t failure_msg_len);
// returns false if any GPS drivers are not performing their logging appropriately
bool logging_failed(void) const;
bool logging_present(void) const { return _raw_data != 0; }
bool logging_enabled(void) const { return _raw_data != 0; }
// used to disable GPS for GPS failure testing in flight
void force_disable(bool disable) {
_force_disable_gps = disable;
}
// used to disable GPS yaw for GPS failure testing in flight
void set_force_disable_yaw(bool disable) {
_force_disable_gps_yaw = disable;
}
// handle possibly fragmented RTCM injection data
void handle_gps_rtcm_fragment(uint8_t flags, const uint8_t *data, uint8_t len);
// get configured type by instance
GPS_Type get_type(uint8_t instance) const {
return instance>=ARRAY_SIZE(params) ? GPS_Type::GPS_TYPE_NONE : params[instance].type;
}
// get iTOW, if supported, zero otherwie
uint32_t get_itow(uint8_t instance) const;
bool get_error_codes(uint8_t instance, uint32_t &error_codes) const;
bool get_error_codes(uint32_t &error_codes) const { return get_error_codes(primary_instance, error_codes); }
enum class SBAS_Mode : int8_t {
Disabled = 0,
Enabled = 1,
DoNotChange = 2,
};
#if GPS_MOVING_BASELINE
// methods used by UAVCAN GPS driver and AP_Periph for moving baseline
void inject_MBL_data(uint8_t* data, uint16_t length);
bool get_RelPosHeading(uint32_t ×tamp, float &relPosHeading, float &relPosLength, float &relPosD, float &accHeading) WARN_IF_UNUSED;
bool get_RTCMV3(const uint8_t *&bytes, uint16_t &len);
void clear_RTCMV3();
#endif // GPS_MOVING_BASELINE
#if !AP_GPS_BLENDED_ENABLED
uint8_t get_auto_switch_type() const { return _auto_switch; }
#endif
protected:
// configuration parameters
Params params[GPS_MAX_INSTANCES];
AP_Int8 _navfilter;
AP_Int8 _auto_switch;
AP_Int16 _sbp_logmask;
AP_Int8 _inject_to;
uint32_t _last_instance_swap_ms;
AP_Enum _sbas_mode;
AP_Int8 _min_elevation;
AP_Int8 _raw_data;
AP_Int8 _save_config;
AP_Int8 _auto_config;
AP_Int8 _blend_mask;
AP_Int16 _driver_options;
AP_Int8 _primary;
uint32_t _log_gps_bit = -1;
enum DriverOptions : int16_t {
UBX_MBUseUart2 = (1U << 0U),
SBF_UseBaseForYaw = (1U << 1U),
UBX_Use115200 = (1U << 2U),
UAVCAN_MBUseDedicatedBus = (1 << 3U),
HeightEllipsoid = (1U << 4),
GPSL5HealthOverride = (1U << 5),
AlwaysRTCMDecode = (1U << 6),
DisableRTCMDecode = (1U << 7),
};
// check if an option is set
bool option_set(const DriverOptions option) const {
return (uint8_t(_driver_options.get()) & uint8_t(option)) != 0;
}
private:
static AP_GPS *_singleton;
HAL_Semaphore rsem;
// returns the desired gps update rate in milliseconds
// this does not provide any guarantee that the GPS is updating at the requested
// rate it is simply a helper for use in the backends for determining what rate
// they should be configuring the GPS to run at
uint16_t get_rate_ms(uint8_t instance) const;
struct GPS_timing {
// the time we got our last fix in system milliseconds
uint32_t last_fix_time_ms;
// the time we got our last message in system milliseconds
uint32_t last_message_time_ms;
// delta time between the last pair of GPS updates in system milliseconds
uint16_t delta_time_ms;
// count of delayed frames
uint8_t delayed_count;
// the average time delta
float average_delta_ms;
};
// Note allowance for an additional instance to contain blended data
GPS_timing timing[GPS_MAX_INSTANCES];
GPS_State state[GPS_MAX_INSTANCES];
AP_GPS_Backend *drivers[GPS_MAX_INSTANCES];
AP_HAL::UARTDriver *_port[GPS_MAX_RECEIVERS];
/// primary GPS instance
uint8_t primary_instance;
/// number of GPS instances present
uint8_t num_instances;
// which ports are locked
uint8_t locked_ports;
// state of auto-detection process, per instance
struct detect_state {
uint32_t last_baud_change_ms;
uint8_t current_baud;
uint32_t probe_baud;
bool auto_detected_baud;
#if AP_GPS_UBLOX_ENABLED
struct UBLOX_detect_state ublox_detect_state;
#endif
#if AP_GPS_SIRF_ENABLED
struct SIRF_detect_state sirf_detect_state;
#endif
#if AP_GPS_NMEA_ENABLED
struct NMEA_detect_state nmea_detect_state;
#endif
#if AP_GPS_SBP_ENABLED
struct SBP_detect_state sbp_detect_state;
#endif
#if AP_GPS_SBP2_ENABLED
struct SBP2_detect_state sbp2_detect_state;
#endif
#if AP_GPS_ERB_ENABLED
struct ERB_detect_state erb_detect_state;
#endif
} detect_state[GPS_MAX_RECEIVERS];
struct {
const char *blob;
uint16_t remaining;
} initblob_state[GPS_MAX_RECEIVERS];
static const uint32_t _baudrates[];
static const char _initialisation_blob[];
static const char _initialisation_raw_blob[];
void detect_instance(uint8_t instance);
// run detection step for one GPS instance. If this finds a GPS then it
// will return it - otherwise nullptr
AP_GPS_Backend *_detect_instance(uint8_t instance);
void update_instance(uint8_t instance);
/*
buffer for re-assembling RTCM data for GPS injection.
The 8 bit flags field in GPS_RTCM_DATA is interpreted as:
1 bit for "is fragmented"
2 bits for fragment number
5 bits for sequence number
The rtcm_buffer is allocated on first use. Once a block of data
is successfully reassembled it is injected into all active GPS
backends. This assumes we don't want more than 4*180=720 bytes
in a RTCM data block
*/
struct rtcm_buffer {
uint8_t fragments_received;
uint8_t sequence;
uint8_t fragment_count;
uint16_t total_length;
uint8_t buffer[MAVLINK_MSG_GPS_RTCM_DATA_FIELD_DATA_LEN*4];
} *rtcm_buffer;
struct {
uint16_t fragments_used;
uint16_t fragments_discarded;
} rtcm_stats;
// re-assemble GPS_RTCM_DATA message
void handle_gps_rtcm_data(mavlink_channel_t chan, const mavlink_message_t &msg);
void handle_gps_inject(const mavlink_message_t &msg);
//Inject a packet of raw binary to a GPS
void inject_data(const uint8_t *data, uint16_t len);
void inject_data(uint8_t instance, const uint8_t *data, uint16_t len);
#if AP_GPS_BLENDED_ENABLED
bool _output_is_blended; // true when a blended GPS solution being output
#endif
bool should_log() const;
bool needs_uart(GPS_Type type) const;
#if GPS_MAX_RECEIVERS > 1
/// Update primary instance
void update_primary(void);
#endif
// helper function for mavlink gps yaw
uint16_t gps_yaw_cdeg(uint8_t instance) const;
// Auto configure types
enum GPS_AUTO_CONFIG {
GPS_AUTO_CONFIG_DISABLE = 0,
GPS_AUTO_CONFIG_ENABLE_SERIAL_ONLY = 1,
GPS_AUTO_CONFIG_ENABLE_ALL = 2,
};
enum class GPSAutoSwitch {
NONE = 0,
USE_BEST = 1,
BLEND = 2,
//USE_SECOND = 3, deprecated for new primary param
USE_PRIMARY_IF_3D_FIX = 4,
};
// used for flight testing with GPS loss
bool _force_disable_gps;
// used for flight testing with GPS yaw loss
bool _force_disable_gps_yaw;
// logging support
void Write_GPS(uint8_t instance);
#if AP_GPS_RTCM_DECODE_ENABLED
/*
per mavlink channel RTCM decoder, enabled with RTCM decode
option in GPS_DRV_OPTIONS
*/
struct {
RTCM3_Parser *parsers[MAVLINK_COMM_NUM_BUFFERS];
uint32_t sent_crc[32];
uint8_t sent_idx;
uint16_t seen_mav_channels;
} rtcm;
bool parse_rtcm_injection(mavlink_channel_t chan, const mavlink_gps_rtcm_data_t &pkt);
#endif
void convert_parameters();
};
namespace AP {
AP_GPS &gps();
};
#endif // AP_GPS_ENABLED