#include "AC_AttitudeControl_Multi.h" #include #include #include #include // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl_Multi::var_info[] = { // parameters from parent vehicle AP_NESTEDGROUPINFO(AC_AttitudeControl, 0), // @Param: RAT_RLL_P // @DisplayName: Roll axis rate controller P gain // @Description: Roll axis rate controller P gain. Corrects in proportion to the difference between the desired roll rate vs actual roll rate // @Range: 0.01 0.5 // @Increment: 0.005 // @User: Standard // @Param: RAT_RLL_I // @DisplayName: Roll axis rate controller I gain // @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate // @Range: 0.01 2.0 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_IMAX // @DisplayName: Roll axis rate controller I gain maximum // @Description: Roll axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_RLL_D // @DisplayName: Roll axis rate controller D gain // @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate // @Range: 0.0 0.05 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FF // @DisplayName: Roll axis rate controller feed forward // @Description: Roll axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_RLL_FLTT // @DisplayName: Roll axis rate controller target frequency in Hz // @Description: Roll axis rate controller target frequency in Hz // @Range: 5 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_FLTE // @DisplayName: Roll axis rate controller error frequency in Hz // @Description: Roll axis rate controller error frequency in Hz // @Range: 0 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_FLTD // @DisplayName: Roll axis rate controller derivative frequency in Hz // @Description: Roll axis rate controller derivative frequency in Hz // @Range: 5 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_RLL_SMAX // @DisplayName: Roll slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_RLL_PDMX // @DisplayName: Roll axis rate controller PD sum maximum // @Description: Roll axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @Param: RAT_RLL_D_FF // @DisplayName: Roll Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_RLL_NTF // @DisplayName: Roll Target notch filter index // @Description: Roll Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: RAT_RLL_NEF // @DisplayName: Roll Error notch filter index // @Description: Roll Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_roll, "RAT_RLL_", 1, AC_AttitudeControl_Multi, AC_PID), // @Param: RAT_PIT_P // @DisplayName: Pitch axis rate controller P gain // @Description: Pitch axis rate controller P gain. Corrects in proportion to the difference between the desired pitch rate vs actual pitch rate output // @Range: 0.01 0.50 // @Increment: 0.005 // @User: Standard // @Param: RAT_PIT_I // @DisplayName: Pitch axis rate controller I gain // @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate // @Range: 0.01 2.0 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_IMAX // @DisplayName: Pitch axis rate controller I gain maximum // @Description: Pitch axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_PIT_D // @DisplayName: Pitch axis rate controller D gain // @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate // @Range: 0.0 0.05 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FF // @DisplayName: Pitch axis rate controller feed forward // @Description: Pitch axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_PIT_FLTT // @DisplayName: Pitch axis rate controller target frequency in Hz // @Description: Pitch axis rate controller target frequency in Hz // @Range: 5 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FLTE // @DisplayName: Pitch axis rate controller error frequency in Hz // @Description: Pitch axis rate controller error frequency in Hz // @Range: 0 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_FLTD // @DisplayName: Pitch axis rate controller derivative frequency in Hz // @Description: Pitch axis rate controller derivative frequency in Hz // @Range: 5 100 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_PIT_SMAX // @DisplayName: Pitch slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_PIT_PDMX // @DisplayName: Pitch axis rate controller PD sum maximum // @Description: Pitch axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @Param: RAT_PIT_D_FF // @DisplayName: Pitch Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_PIT_NTF // @DisplayName: Pitch Target notch filter index // @Description: Pitch Target notch filter index // @Range: 1 8 // @User: Advanced // @Param: RAT_PIT_NEF // @DisplayName: Pitch Error notch filter index // @Description: Pitch Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_pitch, "RAT_PIT_", 2, AC_AttitudeControl_Multi, AC_PID), // @Param: RAT_YAW_P // @DisplayName: Yaw axis rate controller P gain // @Description: Yaw axis rate controller P gain. Corrects in proportion to the difference between the desired yaw rate vs actual yaw rate // @Range: 0.10 2.50 // @Increment: 0.005 // @User: Standard // @Param: RAT_YAW_I // @DisplayName: Yaw axis rate controller I gain // @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate // @Range: 0.010 1.0 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_IMAX // @DisplayName: Yaw axis rate controller I gain maximum // @Description: Yaw axis rate controller I gain maximum. Constrains the maximum that the I term will output // @Range: 0 1 // @Increment: 0.01 // @User: Standard // @Param: RAT_YAW_D // @DisplayName: Yaw axis rate controller D gain // @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate // @Range: 0.000 0.02 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FF // @DisplayName: Yaw axis rate controller feed forward // @Description: Yaw axis rate controller feed forward // @Range: 0 0.5 // @Increment: 0.001 // @User: Standard // @Param: RAT_YAW_FLTT // @DisplayName: Yaw axis rate controller target frequency in Hz // @Description: Yaw axis rate controller target frequency in Hz // @Range: 1 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FLTE // @DisplayName: Yaw axis rate controller error frequency in Hz // @Description: Yaw axis rate controller error frequency in Hz // @Range: 0 20 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_FLTD // @DisplayName: Yaw axis rate controller derivative frequency in Hz // @Description: Yaw axis rate controller derivative frequency in Hz // @Range: 5 50 // @Increment: 1 // @Units: Hz // @User: Standard // @Param: RAT_YAW_SMAX // @DisplayName: Yaw slew rate limit // @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature. // @Range: 0 200 // @Increment: 0.5 // @User: Advanced // @Param: RAT_YAW_PDMX // @DisplayName: Yaw axis rate controller PD sum maximum // @Description: Yaw axis rate controller PD sum maximum. The maximum/minimum value that the sum of the P and D term can output // @Range: 0 1 // @Increment: 0.01 // @Param: RAT_YAW_D_FF // @DisplayName: Yaw Derivative FeedForward Gain // @Description: FF D Gain which produces an output that is proportional to the rate of change of the target // @Range: 0 0.02 // @Increment: 0.0001 // @User: Advanced // @Param: RAT_YAW_NTF // @DisplayName: Yaw Target notch filter index // @Description: Yaw Target notch filter index // @Range: 1 8 // @Units: Hz // @User: Advanced // @Param: RAT_YAW_NEF // @DisplayName: Yaw Error notch filter index // @Description: Yaw Error notch filter index // @Range: 1 8 // @User: Advanced AP_SUBGROUPINFO(_pid_rate_yaw, "RAT_YAW_", 3, AC_AttitudeControl_Multi, AC_PID), // @Param: THR_MIX_MIN // @DisplayName: Throttle Mix Minimum // @Description: Throttle vs attitude control prioritisation used when landing (higher values mean we prioritise attitude control over throttle) // @Range: 0.1 0.25 // @User: Advanced AP_GROUPINFO("THR_MIX_MIN", 4, AC_AttitudeControl_Multi, _thr_mix_min, AC_ATTITUDE_CONTROL_MIN_DEFAULT), // @Param: THR_MIX_MAX // @DisplayName: Throttle Mix Maximum // @Description: Throttle vs attitude control prioritisation used during active flight (higher values mean we prioritise attitude control over throttle) // @Range: 0.5 0.9 // @User: Advanced AP_GROUPINFO("THR_MIX_MAX", 5, AC_AttitudeControl_Multi, _thr_mix_max, AC_ATTITUDE_CONTROL_MAX_DEFAULT), // @Param: THR_MIX_MAN // @DisplayName: Throttle Mix Manual // @Description: Throttle vs attitude control prioritisation used during manual flight (higher values mean we prioritise attitude control over throttle) // @Range: 0.1 0.9 // @User: Advanced AP_GROUPINFO("THR_MIX_MAN", 6, AC_AttitudeControl_Multi, _thr_mix_man, AC_ATTITUDE_CONTROL_MAN_DEFAULT), // @Param: THR_G_BOOST // @DisplayName: Throttle-gain boost // @Description: Throttle-gain boost ratio. A value of 0 means no boosting is applied, a value of 1 means full boosting is applied. Describes the ratio increase that is applied to angle P and PD on pitch and roll. // @Range: 0 1 // @User: Advanced AP_GROUPINFO("THR_G_BOOST", 7, AC_AttitudeControl_Multi, _throttle_gain_boost, 0.0f), AP_GROUPEND }; AC_AttitudeControl_Multi::AC_AttitudeControl_Multi(AP_AHRS_View &ahrs, const AP_MultiCopter &aparm, AP_MotorsMulticopter& motors) : AC_AttitudeControl(ahrs, aparm, motors), _motors_multi(motors) { AP_Param::setup_object_defaults(this, var_info); #if AP_FILTER_ENABLED set_notch_sample_rate(AP::scheduler().get_loop_rate_hz()); #endif } // Update Alt_Hold angle maximum void AC_AttitudeControl_Multi::update_althold_lean_angle_max(float throttle_in) { // calc maximum tilt angle based on throttle float thr_max = _motors_multi.get_throttle_thrust_max(); // divide by zero check if (is_zero(thr_max)) { _althold_lean_angle_max = 0.0f; return; } float althold_lean_angle_max = acosf(constrain_float(throttle_in / (AC_ATTITUDE_CONTROL_ANGLE_LIMIT_THROTTLE_MAX * thr_max), 0.0f, 1.0f)); _althold_lean_angle_max = _althold_lean_angle_max + (_dt / (_dt + _angle_limit_tc)) * (althold_lean_angle_max - _althold_lean_angle_max); } void AC_AttitudeControl_Multi::set_throttle_out(float throttle_in, bool apply_angle_boost, float filter_cutoff) { _throttle_in = throttle_in; update_althold_lean_angle_max(throttle_in); _motors.set_throttle_filter_cutoff(filter_cutoff); if (apply_angle_boost) { // Apply angle boost throttle_in = get_throttle_boosted(throttle_in); } else { // Clear angle_boost for logging purposes _angle_boost = 0.0f; } _motors.set_throttle(throttle_in); _motors.set_throttle_avg_max(get_throttle_avg_max(MAX(throttle_in, _throttle_in))); } void AC_AttitudeControl_Multi::set_throttle_mix_max(float ratio) { ratio = constrain_float(ratio, 0.0f, 1.0f); _throttle_rpy_mix_desired = (1.0f - ratio) * _thr_mix_min + ratio * _thr_mix_max; } // returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1 float AC_AttitudeControl_Multi::get_throttle_boosted(float throttle_in) { if (!_angle_boost_enabled) { _angle_boost = 0; return throttle_in; } // inverted_factor is 1 for tilt angles below 60 degrees // inverted_factor reduces from 1 to 0 for tilt angles between 60 and 90 degrees float cos_tilt = _ahrs.cos_pitch() * _ahrs.cos_roll(); float inverted_factor = constrain_float(10.0f * cos_tilt, 0.0f, 1.0f); float cos_tilt_target = cosf(_thrust_angle); float boost_factor = 1.0f / constrain_float(cos_tilt_target, 0.1f, 1.0f); float throttle_out = throttle_in * inverted_factor * boost_factor; _angle_boost = constrain_float(throttle_out - throttle_in, -1.0f, 1.0f); return throttle_out; } // returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1 float AC_AttitudeControl_Multi::get_throttle_avg_max(float throttle_in) { throttle_in = constrain_float(throttle_in, 0.0f, 1.0f); return MAX(throttle_in, throttle_in * MAX(0.0f, 1.0f - _throttle_rpy_mix) + _motors.get_throttle_hover() * _throttle_rpy_mix); } // update_throttle_gain_boost - boost angle_p/pd each cycle on high throttle slew void AC_AttitudeControl_Multi::update_throttle_gain_boost() { // Boost PD and Angle P on very rapid throttle changes if (_motors.get_throttle_slew_rate() > AC_ATTITUDE_CONTROL_THR_G_BOOST_THRESH) { const float pd_boost = constrain_float(_throttle_gain_boost + 1.0f, 1.0, 2.0); set_PD_scale_mult(Vector3f(pd_boost, pd_boost, 1.0f)); const float angle_p_boost = constrain_float((_throttle_gain_boost + 1.0f) * (_throttle_gain_boost + 1.0f), 1.0, 4.0); set_angle_P_scale_mult(Vector3f(angle_p_boost, angle_p_boost, 1.0f)); } } // update_throttle_rpy_mix - slew set_throttle_rpy_mix to requested value void AC_AttitudeControl_Multi::update_throttle_rpy_mix() { // slew _throttle_rpy_mix to _throttle_rpy_mix_desired if (_throttle_rpy_mix < _throttle_rpy_mix_desired) { // increase quickly (i.e. from 0.1 to 0.9 in 0.4 seconds) _throttle_rpy_mix += MIN(2.0f * _dt, _throttle_rpy_mix_desired - _throttle_rpy_mix); } else if (_throttle_rpy_mix > _throttle_rpy_mix_desired) { // reduce more slowly (from 0.9 to 0.1 in 1.6 seconds) _throttle_rpy_mix -= MIN(0.5f * _dt, _throttle_rpy_mix - _throttle_rpy_mix_desired); // if the mix is still higher than that being used, reset immediately const float throttle_hover = _motors.get_throttle_hover(); const float throttle_in = _motors.get_throttle(); const float throttle_out = MAX(_motors.get_throttle_out(), throttle_in); float mix_used; // since throttle_out >= throttle_in at this point we don't need to check throttle_in < throttle_hover if (throttle_out < throttle_hover) { mix_used = (throttle_out - throttle_in) / (throttle_hover - throttle_in); } else { mix_used = throttle_out / throttle_hover; } _throttle_rpy_mix = MIN(_throttle_rpy_mix, MAX(mix_used, _throttle_rpy_mix_desired)); } _throttle_rpy_mix = constrain_float(_throttle_rpy_mix, 0.1f, AC_ATTITUDE_CONTROL_MAX); } void AC_AttitudeControl_Multi::rate_controller_run_dt(const Vector3f& gyro, float dt) { // take a copy of the target so that it can't be changed from under us. Vector3f ang_vel_body = _ang_vel_body; // boost angle_p/pd each cycle on high throttle slew update_throttle_gain_boost(); // move throttle vs attitude mixing towards desired (called from here because this is conveniently called on every iteration) update_throttle_rpy_mix(); ang_vel_body += _sysid_ang_vel_body; _rate_gyro = gyro; _rate_gyro_time_us = AP_HAL::micros64(); _motors.set_roll(get_rate_roll_pid().update_all(ang_vel_body.x, gyro.x, dt, _motors.limit.roll, _pd_scale.x) + _actuator_sysid.x); _motors.set_roll_ff(get_rate_roll_pid().get_ff()); _motors.set_pitch(get_rate_pitch_pid().update_all(ang_vel_body.y, gyro.y, dt, _motors.limit.pitch, _pd_scale.y) + _actuator_sysid.y); _motors.set_pitch_ff(get_rate_pitch_pid().get_ff()); _motors.set_yaw(get_rate_yaw_pid().update_all(ang_vel_body.z, gyro.z, dt, _motors.limit.yaw, _pd_scale.z) + _actuator_sysid.z); _motors.set_yaw_ff(get_rate_yaw_pid().get_ff()*_feedforward_scalar); _pd_scale_used = _pd_scale; control_monitor_update(); } // reset the rate controller target loop updates void AC_AttitudeControl_Multi::rate_controller_target_reset() { _sysid_ang_vel_body.zero(); _actuator_sysid.zero(); _pd_scale = VECTORF_111; } // run the rate controller using the configured _dt and latest gyro void AC_AttitudeControl_Multi::rate_controller_run() { Vector3f gyro_latest = _ahrs.get_gyro_latest(); rate_controller_run_dt(gyro_latest, _dt); } // sanity check parameters. should be called once before takeoff void AC_AttitudeControl_Multi::parameter_sanity_check() { // sanity check throttle mix parameters if (_thr_mix_man < 0.1f || _thr_mix_man > AC_ATTITUDE_CONTROL_MAN_LIMIT) { // parameter description recommends thr-mix-man be no higher than 0.9 but we allow up to 4.0 // which can be useful for very high powered copters with very low hover throttle _thr_mix_man.set_and_save(constrain_float(_thr_mix_man, 0.1, AC_ATTITUDE_CONTROL_MAN_LIMIT)); } if (_thr_mix_min < 0.1f || _thr_mix_min > AC_ATTITUDE_CONTROL_MIN_LIMIT) { _thr_mix_min.set_and_save(constrain_float(_thr_mix_min, 0.1, AC_ATTITUDE_CONTROL_MIN_LIMIT)); } if (_thr_mix_max < 0.5f || _thr_mix_max > AC_ATTITUDE_CONTROL_MAX) { // parameter description recommends thr-mix-max be no higher than 0.9 but we allow up to 5.0 // which can be useful for very high powered copters with very low hover throttle _thr_mix_max.set_and_save(constrain_float(_thr_mix_max, 0.5, AC_ATTITUDE_CONTROL_MAX)); } if (_thr_mix_min > _thr_mix_max) { _thr_mix_min.set_and_save(AC_ATTITUDE_CONTROL_MIN_DEFAULT); _thr_mix_max.set_and_save(AC_ATTITUDE_CONTROL_MAX_DEFAULT); } } void AC_AttitudeControl_Multi::set_notch_sample_rate(float sample_rate) { #if AP_FILTER_ENABLED _pid_rate_roll.set_notch_sample_rate(sample_rate); _pid_rate_pitch.set_notch_sample_rate(sample_rate); _pid_rate_yaw.set_notch_sample_rate(sample_rate); #endif }