// desired angle in // motor commands out (in degrees) void init_pids() { max_stabilize_dampener = pid_stabilize_roll.kP() * 2500; stabilze_dampener = 5729.57795 * stabilize_rate_roll_pitch; max_yaw_dampener = pid_yaw.kP() * 6000; // .3 * 6000 = 1800 stabilze_yaw_dampener = 5729.57795 * stabilize_rate_yaw; // .3 } void output_stabilize() { float roll_error, pitch_error; int max_out; Vector3f omega = dcm.get_gyro(); /*testing code:*/ //pitch_sensor = roll_sensor = 0; // testing only //stabilize_rate_roll_pitch = (float)rc_6.control_in / 1000; //init_pids(); // control +- 45° is mixed with the navigation request by the Autopilot // output is in degrees = target pitch and roll of copter rc_1.servo_out = rc_1.control_mix(nav_roll); rc_2.servo_out = rc_2.control_mix(nav_pitch); roll_error = rc_1.servo_out - roll_sensor; pitch_error = rc_2.servo_out - pitch_sensor; yaw_error = nav_yaw - yaw_sensor; yaw_error = wrap_180(yaw_error); // limit the error we're feeding to the PID roll_error = constrain(roll_error, -2500, 2500); pitch_error = constrain(pitch_error, -2500, 2500); yaw_error = constrain(yaw_error, -6000, 6000); //Serial.printf("s: %d \t mix %d, err %d", (int)roll_sensor, (int)rc_1.servo_out, (int)roll_error); // write out angles back to servo out - this will be converted to PWM by RC_Channel rc_1.servo_out = pid_stabilize_roll.get_pid(roll_error, deltaMiliSeconds, 1.0); rc_2.servo_out = pid_stabilize_pitch.get_pid(pitch_error, deltaMiliSeconds, 1.0); rc_4.servo_out = pid_yaw.get_pid(yaw_error, deltaMiliSeconds, 1.0); // .3 = 198pwm //Serial.printf("\tpid: %d", (int)rc_1.servo_out); // We adjust the output by the rate of rotation: // Rate control through bias corrected gyro rates // omega is the raw gyro reading int roll_dampener = (omega.x * stabilze_dampener);// Omega is in radians int pitch_dampener = (omega.y * stabilze_dampener); int yaw_dampener = (omega.z * stabilze_yaw_dampener); // Limit dampening to be equal to propotional term for symmetry rc_1.servo_out -= constrain(roll_dampener, -max_stabilize_dampener, max_stabilize_dampener); // +- 15° rc_2.servo_out -= constrain(pitch_dampener, -max_stabilize_dampener, max_stabilize_dampener); // +- 15° rc_4.servo_out -= constrain(yaw_dampener, -max_yaw_dampener, max_yaw_dampener); // +- 15° //Serial.printf(" yaw out: %d, d: %d", (int)rc_4.angle_to_pwm(), yaw_dampener); //Serial.printf("\trd: %d", roll_dampener); //Serial.printf("\tlimit: %d, PWM: %d", rc_1.servo_out, rc_1.angle_to_pwm()); } // err -2500 pid: -1100 rd: 1117 limit: -1650, PWM: -152 //s: -1247 mix 0, err 1247 pid: 548 rd: -153 limit: 395, PWM: 35 void output_rate_control() { Vector3f omega = dcm.get_gyro(); rc_4.servo_out = rc_4.control_in; rc_1.servo_out = rc_2.control_in; rc_2.servo_out = rc_2.control_in; // Rate control through bias corrected gyro rates // omega is the raw gyro reading plus Omega_I, so it´s bias corrected rc_1.servo_out -= (omega.x * 5729.57795 * acro_rate_roll_pitch); rc_2.servo_out -= (omega.y * 5729.57795 * acro_rate_roll_pitch); rc_4.servo_out -= (omega.z * 5729.57795 * acro_rate_yaw); //Serial.printf("\trated out %d, omega ", rc_1.servo_out); //Serial.print((Omega[0] * 5729.57795 * stabilize_rate_roll_pitch), 3); // Limit output rc_1.servo_out = constrain(rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT); rc_2.servo_out = constrain(rc_2.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT); rc_4.servo_out = constrain(rc_4.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT); } // Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc. // Keeps outdated data out of our calculations void reset_I(void) { pid_nav.reset_I(); pid_throttle.reset_I(); } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ void set_servos_4(void) { static byte num; //motor_armed = false; // Quadcopter mix if (motor_armed == true) { int out_min = rc_3.radio_min; // Throttle is 0 to 1000 only rc_3.servo_out = constrain(rc_3.servo_out, 0, 1000); if(rc_3.servo_out > 0) out_min = rc_3.radio_min + 50; //Serial.printf("out: %d %d %d %d\t\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out); // creates the radio_out anf pwm_out values rc_1.calc_pwm(); rc_2.calc_pwm(); rc_3.calc_pwm(); rc_4.calc_pwm(); //Serial.printf("out: %d %d %d %d\n", rc_1.radio_out, rc_2.radio_out, rc_3.radio_out, rc_4.radio_out); //Serial.printf("yaw: %d ", rc_4.radio_out); if(frame_type == PLUS_FRAME){ motor_out[RIGHT] = rc_3.radio_out - rc_1.pwm_out; motor_out[LEFT] = rc_3.radio_out + rc_1.pwm_out; motor_out[FRONT] = rc_3.radio_out + rc_2.pwm_out; motor_out[BACK] = rc_3.radio_out - rc_2.pwm_out; }else{ int roll_out = rc_1.pwm_out / 2; int pitch_out = rc_2.pwm_out / 2; motor_out[RIGHT] = rc_3.radio_out - roll_out + pitch_out; motor_out[LEFT] = rc_3.radio_out + roll_out - pitch_out; motor_out[FRONT] = rc_3.radio_out + roll_out + pitch_out; motor_out[BACK] = rc_3.radio_out - roll_out - pitch_out; } //Serial.printf("\tb4: %d %d %d %d ", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]); motor_out[RIGHT] += rc_4.pwm_out; motor_out[LEFT] += rc_4.pwm_out; motor_out[FRONT] -= rc_4.pwm_out; motor_out[BACK] -= rc_4.pwm_out; //Serial.printf("\tl8r: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]); motor_out[RIGHT] = constrain(motor_out[RIGHT], out_min, rc_3.radio_max); motor_out[LEFT] = constrain(motor_out[LEFT], out_min, rc_3.radio_max); motor_out[FRONT] = constrain(motor_out[FRONT], out_min, rc_3.radio_max); motor_out[BACK] = constrain(motor_out[BACK], out_min, rc_3.radio_max); ///* int r_out = ((long)(motor_out[RIGHT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min); int l_out = ((long)(motor_out[LEFT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min); int f_out = ((long)(motor_out[FRONT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min); int b_out = ((long)(motor_out[BACK] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min); //*/ //~#*set_servos_4: 398, -39 38 38 -36 /* num++; if (num > 50){ num = 0; Serial.printf("control_in: %d ", rc_3.control_in); Serial.printf(" servo: %d %d %d %d\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out); Serial.printf(" pwm: %d %d %d %d\n", r_out, l_out, f_out, b_out); } //*/ //Serial.printf("set: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]); //Serial.printf("s: %d %d %d\t\t", (int)roll_sensor, (int)pitch_sensor, (int)yaw_sensor); ///Serial.printf("outmin: %d\n", out_min); /* write_int(r_out); write_int(l_out); write_int(f_out); write_int(b_out); write_int((int)(roll_sensor / 100)); write_int((int)(pitch_sensor / 100)); write_int((int)(yaw_sensor / 100)); write_int((int)(yaw_error / 100)); write_int((int)(current_loc.alt)); write_int((int)(altitude_error)); flush(10); //*/ // Send commands to motors if(rc_3.servo_out > 0){ APM_RC.OutputCh(CH_1, motor_out[RIGHT]); APM_RC.OutputCh(CH_2, motor_out[LEFT]); APM_RC.OutputCh(CH_3, motor_out[FRONT]); APM_RC.OutputCh(CH_4, motor_out[BACK]); }else{ APM_RC.OutputCh(CH_1, rc_3.radio_min); APM_RC.OutputCh(CH_2, rc_3.radio_min); APM_RC.OutputCh(CH_3, rc_3.radio_min); APM_RC.OutputCh(CH_4, rc_3.radio_min); } // InstantPWM APM_RC.Force_Out0_Out1(); APM_RC.Force_Out2_Out3(); }else{ // Send commands to motors APM_RC.OutputCh(CH_1, rc_3.radio_min); APM_RC.OutputCh(CH_2, rc_3.radio_min); APM_RC.OutputCh(CH_3, rc_3.radio_min); APM_RC.OutputCh(CH_4, rc_3.radio_min); // reset I terms of PID controls reset_I(); // Initialize yaw command to actual yaw when throttle is down... rc_4.control_in = ToDeg(yaw); } } void demo_servos(byte i) { // nothing to do }