#pragma once #include #include #include #include "PosVelEKF.h" #include // declare backend classes class AC_PrecLand_Backend; class AC_PrecLand_Companion; class AC_PrecLand_IRLock; class AC_PrecLand_SITL_Gazebo; class AC_PrecLand_SITL; class AC_PrecLand { // declare backends as friends friend class AC_PrecLand_Backend; friend class AC_PrecLand_Companion; friend class AC_PrecLand_IRLock; friend class AC_PrecLand_SITL_Gazebo; friend class AC_PrecLand_SITL; public: AC_PrecLand(); /* Do not allow copies */ AC_PrecLand(const AC_PrecLand &other) = delete; AC_PrecLand &operator=(const AC_PrecLand&) = delete; // perform any required initialisation of landing controllers // update_rate_hz should be the rate at which the update method will be called in hz void init(uint16_t update_rate_hz); // returns true if precision landing is healthy bool healthy() const { return _backend_state.healthy; } // returns true if precision landing is enabled (used only for logging) bool enabled() const { return _enabled.get(); } // returns time of last update uint32_t last_update_ms() const { return _last_update_ms; } // returns time of last time target was seen uint32_t last_backend_los_meas_ms() const { return _last_backend_los_meas_ms; } // vehicle has to be closer than this many cm's to the target before descending towards target float get_max_xy_error_before_descending_cm() const { return _xy_max_dist_desc * 100.0f; } // returns ekf outlier count uint32_t ekf_outlier_count() const { return _outlier_reject_count; } // give chance to driver to get updates from sensor, should be called at 400hz void update(float rangefinder_alt_cm, bool rangefinder_alt_valid); // returns target position relative to the EKF origin bool get_target_position_cm(Vector2f& ret); // returns target relative position as 3D vector void get_target_position_measurement_cm(Vector3f& ret); // returns target position relative to vehicle bool get_target_position_relative_cm(Vector2f& ret); // returns target velocity relative to vehicle bool get_target_velocity_relative_cms(Vector2f& ret); // returns true when the landing target has been detected bool target_acquired(); // process a LANDING_TARGET mavlink message void handle_msg(const mavlink_landing_target_t &packet, uint32_t timestamp_ms); // parameter var table static const struct AP_Param::GroupInfo var_info[]; private: enum class EstimatorType : uint8_t { RAW_SENSOR = 0, KALMAN_FILTER = 1, }; // types of precision landing (used for PRECLAND_TYPE parameter) enum class Type : uint8_t { NONE = 0, COMPANION = 1, IRLOCK = 2, SITL_GAZEBO = 3, SITL = 4, }; // check if EKF got the time to initialize when the landing target was first detected // Expects sensor to update within EKF_INIT_SENSOR_MIN_UPDATE_MS milliseconds till EKF_INIT_TIME_MS milliseconds have passed // after this period landing target estimates can be used by vehicle void check_ekf_init_timeout(); // run target position estimator void run_estimator(float rangefinder_alt_m, bool rangefinder_alt_valid); // If a new measurement was retrieved, sets _target_pos_rel_meas_NED and returns true bool construct_pos_meas_using_rangefinder(float rangefinder_alt_m, bool rangefinder_alt_valid); // get vehicle body frame 3D vector from vehicle to target. returns true on success, false on failure bool retrieve_los_meas(Vector3f& target_vec_unit_body); // calculate target's position and velocity relative to the vehicle (used as input to position controller) // results are stored in_target_pos_rel_out_NE, _target_vel_rel_out_NE void run_output_prediction(); // parameters AP_Int8 _enabled; // enabled/disabled AP_Enum _type; // precision landing sensor type AP_Int8 _bus; // which sensor bus AP_Enum _estimator_type; // precision landing estimator type AP_Float _lag; // sensor lag in seconds AP_Float _yaw_align; // Yaw angle from body x-axis to sensor x-axis. AP_Float _land_ofs_cm_x; // Desired landing position of the camera forward of the target in vehicle body frame AP_Float _land_ofs_cm_y; // Desired landing position of the camera right of the target in vehicle body frame AP_Float _accel_noise; // accelerometer process noise AP_Vector3f _cam_offset; // Position of the camera relative to the CG AP_Float _xy_max_dist_desc; // Vehicle doing prec land will only descent vertically when horizontal error (in m) is below this limit uint32_t _last_update_ms; // system time in millisecond when update was last called bool _target_acquired; // true if target has been seen recently after estimator is initialized bool _estimator_initialized; // true if estimator has been initialized after few seconds of the target being detected by sensor uint32_t _estimator_init_ms; // system time in millisecond when EKF was init uint32_t _last_backend_los_meas_ms; // system time target was last seen PosVelEKF _ekf_x, _ekf_y; // Kalman Filter for x and y axis uint32_t _outlier_reject_count; // mini-EKF's outlier counter (3 consecutive outliers lead to EKF accepting updates) Vector3f _target_pos_rel_meas_NED; // target's relative position as 3D vector Vector2f _target_pos_rel_est_NE; // target's position relative to the IMU, not compensated for lag Vector2f _target_vel_rel_est_NE; // target's velocity relative to the IMU, not compensated for lag Vector2f _target_pos_rel_out_NE; // target's position relative to the camera, fed into position controller Vector2f _target_vel_rel_out_NE; // target's velocity relative to the CG, fed into position controller // structure and buffer to hold a history of vehicle velocity struct inertial_data_frame_s { Matrix3f Tbn; // dcm rotation matrix to rotate body frame to north Vector3f correctedVehicleDeltaVelocityNED; Vector3f inertialNavVelocity; bool inertialNavVelocityValid; float dt; uint64_t time_usec; }; ObjectArray *_inertial_history; // backend state struct precland_state { bool healthy; } _backend_state; AC_PrecLand_Backend *_backend; // pointers to backend precision landing driver // write out PREC message to log: void Write_Precland(); uint32_t last_log_ms; // last time we logged };