/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- Adapted from Victor Mayoral Vilches's legacy driver under folder LSM9DS0 */ #include #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "AP_InertialSensor_LSM9DS0.h" #include extern const AP_HAL::HAL& hal; #define LSM9DS0_G_WHOAMI 0xD4 #define LSM9DS0_XM_WHOAMI 0x49 //////////////////////////// // LSM9DS0 Gyro Registers // //////////////////////////// #define WHO_AM_I_G 0x0F #define CTRL_REG1_G 0x20 # define CTRL_REG1_G_DR_95Hz_BW_12500mHz (0x0 << 4) # define CTRL_REG1_G_DR_95Hz_BW_25Hz (0x1 << 4) # define CTRL_REG1_G_DR_190Hz_BW_12500mHz (0x4 << 4) # define CTRL_REG1_G_DR_190Hz_BW_25Hz (0x5 << 4) # define CTRL_REG1_G_DR_190Hz_BW_50Hz (0x6 << 4) # define CTRL_REG1_G_DR_190Hz_BW_70Hz (0x7 << 4) # define CTRL_REG1_G_DR_380Hz_BW_20Hz (0x8 << 4) # define CTRL_REG1_G_DR_380Hz_BW_25Hz (0x9 << 4) # define CTRL_REG1_G_DR_380Hz_BW_50Hz (0xA << 4) # define CTRL_REG1_G_DR_380Hz_BW_100Hz (0xB << 4) # define CTRL_REG1_G_DR_760Hz_BW_30Hz (0xC << 4) # define CTRL_REG1_G_DR_760Hz_BW_35Hz (0xD << 4) # define CTRL_REG1_G_DR_760Hz_BW_50Hz (0xE << 4) # define CTRL_REG1_G_DR_760Hz_BW_100Hz (0xF << 4) # define CTRL_REG1_G_PD (0x1 << 3) # define CTRL_REG1_G_ZEN (0x1 << 2) # define CTRL_REG1_G_YEN (0x1 << 1) # define CTRL_REG1_G_XEN (0x1 << 0) #define CTRL_REG2_G 0x21 # define CTRL_REG2_G_HPM_NORMAL_RESET (0x0 << 4) # define CTRL_REG2_G_HPM_REFERENCE (0x1 << 4) # define CTRL_REG2_G_HPM_NORMAL (0x2 << 4) # define CTRL_REG2_G_HPM_AUTORESET (0x3 << 4) # define CTRL_REG2_G_HPCF_0 (0x0 << 0) # define CTRL_REG2_G_HPCF_1 (0x1 << 0) # define CTRL_REG2_G_HPCF_2 (0x2 << 0) # define CTRL_REG2_G_HPCF_3 (0x3 << 0) # define CTRL_REG2_G_HPCF_4 (0x4 << 0) # define CTRL_REG2_G_HPCF_5 (0x5 << 0) # define CTRL_REG2_G_HPCF_6 (0x6 << 0) # define CTRL_REG2_G_HPCF_7 (0x7 << 0) # define CTRL_REG2_G_HPCF_8 (0x8 << 0) # define CTRL_REG2_G_HPCF_9 (0x9 << 0) #define CTRL_REG3_G 0x22 # define CTRL_REG3_G_I1_INT1 (0x1 << 7) # define CTRL_REG3_G_I1_BOOT (0x1 << 6) # define CTRL_REG3_G_H_LACTIVE (0x1 << 5) # define CTRL_REG3_G_PP_OD (0x1 << 4) # define CTRL_REG3_G_I2_DRDY (0x1 << 3) # define CTRL_REG3_G_I2_WTM (0x1 << 2) # define CTRL_REG3_G_I2_ORUN (0x1 << 1) # define CTRL_REG3_G_I2_EMPTY (0x1 << 0) #define CTRL_REG4_G 0x23 # define CTRL_REG4_G_BDU (0x1 << 7) # define CTRL_REG4_G_BLE (0x1 << 6) # define CTRL_REG4_G_FS_245DPS (0x0 << 4) # define CTRL_REG4_G_FS_500DPS (0x1 << 4) # define CTRL_REG4_G_FS_2000DPS (0x2 << 4) # define CTRL_REG4_G_ST_NORMAL (0x0 << 1) # define CTRL_REG4_G_ST_0 (0x1 << 1) # define CTRL_REG4_G_ST_1 (0x3 << 1) # define CTRL_REG4_G_SIM_3WIRE (0x1 << 0) #define CTRL_REG5_G 0x24 # define CTRL_REG5_G_BOOT (0x1 << 7) # define CTRL_REG5_G_FIFO_EN (0x1 << 6) # define CTRL_REG5_G_HPEN (0x1 << 4) # define CTRL_REG5_G_INT1_SEL_00 (0x0 << 2) # define CTRL_REG5_G_INT1_SEL_01 (0x1 << 2) # define CTRL_REG5_G_INT1_SEL_10 (0x2 << 2) # define CTRL_REG5_G_INT1_SEL_11 (0x3 << 2) # define CTRL_REG5_G_OUT_SEL_00 (0x0 << 0) # define CTRL_REG5_G_OUT_SEL_01 (0x1 << 0) # define CTRL_REG5_G_OUT_SEL_10 (0x2 << 0) # define CTRL_REG5_G_OUT_SEL_11 (0x3 << 0) #define REFERENCE_G 0x25 #define STATUS_REG_G 0x27 # define STATUS_REG_G_ZYXOR (0x1 << 7) # define STATUS_REG_G_ZOR (0x1 << 6) # define STATUS_REG_G_YOR (0x1 << 5) # define STATUS_REG_G_XOR (0x1 << 4) # define STATUS_REG_G_ZYXDA (0x1 << 3) # define STATUS_REG_G_ZDA (0x1 << 2) # define STATUS_REG_G_YDA (0x1 << 1) # define STATUS_REG_G_XDA (0x1 << 0) #define OUT_X_L_G 0x28 #define OUT_X_H_G 0x29 #define OUT_Y_L_G 0x2A #define OUT_Y_H_G 0x2B #define OUT_Z_L_G 0x2C #define OUT_Z_H_G 0x2D #define FIFO_CTRL_REG_G 0x2E # define FIFO_CTRL_REG_G_FM_BYPASS (0x0 << 5) # define FIFO_CTRL_REG_G_FM_FIFO (0x1 << 5) # define FIFO_CTRL_REG_G_FM_STREAM (0x2 << 5) # define FIFO_CTRL_REG_G_FM_STREAM_TO_FIFO (0x3 << 5) # define FIFO_CTRL_REG_G_FM_BYPASS_TO_STREAM (0x4 << 5) # define FIFO_CTRL_REG_G_WTM_MASK 0x1F #define FIFO_SRC_REG_G 0x2F # define FIFO_SRC_REG_G_WTM (0x1 << 7) # define FIFO_SRC_REG_G_OVRN (0x1 << 6) # define FIFO_SRC_REG_G_EMPTY (0x1 << 5) # define FIFO_SRC_REG_G_FSS_MASK 0x1F #define INT1_CFG_G 0x30 # define INT1_CFG_G_AND_OR (0x1 << 7) # define INT1_CFG_G_LIR (0x1 << 6) # define INT1_CFG_G_ZHIE (0x1 << 5) # define INT1_CFG_G_ZLIE (0x1 << 4) # define INT1_CFG_G_YHIE (0x1 << 3) # define INT1_CFG_G_YLIE (0x1 << 2) # define INT1_CFG_G_XHIE (0x1 << 1) # define INT1_CFG_G_XLIE (0x1 << 0) #define INT1_SRC_G 0x31 # define INT1_SRC_G_IA (0x1 << 6) # define INT1_SRC_G_ZH (0x1 << 5) # define INT1_SRC_G_ZL (0x1 << 4) # define INT1_SRC_G_YH (0x1 << 3) # define INT1_SRC_G_YL (0x1 << 2) # define INT1_SRC_G_XH (0x1 << 1) # define INT1_SRC_G_XL (0x1 << 0) #define INT1_THS_XH_G 0x32 #define INT1_THS_XL_G 0x33 #define INT1_THS_YH_G 0x34 #define INT1_THS_YL_G 0x35 #define INT1_THS_ZH_G 0x36 #define INT1_THS_ZL_G 0x37 #define INT1_DURATION_G 0x38 # define INT1_DURATION_G_WAIT (0x1 << 7) # define INT1_DURATION_G_D_MASK 0x7F ////////////////////////////////////////// // LSM9DS0 Accel/Magneto (XM) Registers // ////////////////////////////////////////// #define OUT_TEMP_L_XM 0x05 #define OUT_TEMP_H_XM 0x06 #define STATUS_REG_M 0x07 # define STATUS_REG_M_ZYXMOR (0x1 << 7) # define STATUS_REG_M_ZMOR (0x1 << 6) # define STATUS_REG_M_YMOR (0x1 << 5) # define STATUS_REG_M_XMOR (0x1 << 4) # define STATUS_REG_M_ZYXMDA (0x1 << 3) # define STATUS_REG_M_ZMDA (0x1 << 2) # define STATUS_REG_M_YMDA (0x1 << 1) # define STATUS_REG_M_XMDA (0x1 << 0) #define OUT_X_L_M 0x08 #define OUT_X_H_M 0x09 #define OUT_Y_L_M 0x0A #define OUT_Y_H_M 0x0B #define OUT_Z_L_M 0x0C #define OUT_Z_H_M 0x0D #define WHO_AM_I_XM 0x0F #define INT_CTRL_REG_M 0x12 # define INT_CTRL_REG_M_XMIEN (0x1 << 7) # define INT_CTRL_REG_M_YMIEN (0x1 << 6) # define INT_CTRL_REG_M_ZMIEN (0x1 << 5) # define INT_CTRL_REG_M_PP_OD (0x1 << 4) # define INT_CTRL_REG_M_IEA (0x1 << 3) # define INT_CTRL_REG_M_IEL (0x1 << 2) # define INT_CTRL_REG_M_4D (0x1 << 1) # define INT_CTRL_REG_M_MIEN (0x1 << 0) #define INT_SRC_REG_M 0x13 # define INT_SRC_REG_M_M_PTH_X (0x1 << 7) # define INT_SRC_REG_M_M_PTH_Y (0x1 << 6) # define INT_SRC_REG_M_M_PTH_Z (0x1 << 5) # define INT_SRC_REG_M_M_NTH_X (0x1 << 4) # define INT_SRC_REG_M_M_NTH_Y (0x1 << 3) # define INT_SRC_REG_M_M_NTH_Z (0x1 << 2) # define INT_SRC_REG_M_MROI (0x1 << 1) # define INT_SRC_REG_M_MINT (0x1 << 0) #define INT_THS_L_M 0x14 #define INT_THS_H_M 0x15 #define OFFSET_X_L_M 0x16 #define OFFSET_X_H_M 0x17 #define OFFSET_Y_L_M 0x18 #define OFFSET_Y_H_M 0x19 #define OFFSET_Z_L_M 0x1A #define OFFSET_Z_H_M 0x1B #define REFERENCE_X 0x1C #define REFERENCE_Y 0x1D #define REFERENCE_Z 0x1E #define CTRL_REG0_XM 0x1F # define CTRL_REG0_XM_B00T (0x1 << 7) # define CTRL_REG0_XM_FIFO_EN (0x1 << 6) # define CTRL_REG0_XM_WTM_EN (0x1 << 5) # define CTRL_REG0_XM_HP_CLICK (0x1 << 2) # define CTRL_REG0_XM_HPIS1 (0x1 << 1) # define CTRL_REG0_XM_HPIS2 (0x1 << 0) #define CTRL_REG1_XM 0x20 # define CTRL_REG1_XM_AODR_POWERDOWN (0x0 << 4) # define CTRL_REG1_XM_AODR_3125mHz (0x1 << 4) # define CTRL_REG1_XM_AODR_6250mHz (0x2 << 4) # define CTRL_REG1_XM_AODR_12500mHz (0x3 << 4) # define CTRL_REG1_XM_AODR_25Hz (0x4 << 4) # define CTRL_REG1_XM_AODR_50Hz (0x5 << 4) # define CTRL_REG1_XM_AODR_100Hz (0x6 << 4) # define CTRL_REG1_XM_AODR_200Hz (0x7 << 4) # define CTRL_REG1_XM_AODR_400Hz (0x8 << 4) # define CTRL_REG1_XM_AODR_800Hz (0x9 << 4) # define CTRL_REG1_XM_AODR_1600Hz (0xA << 4) # define CTRL_REG1_XM_BDU (0x1 << 3) # define CTRL_REG1_XM_AZEN (0x1 << 2) # define CTRL_REG1_XM_AYEN (0x1 << 1) # define CTRL_REG1_XM_AXEN (0x1 << 0) #define CTRL_REG2_XM 0x21 # define CTRL_REG2_XM_ABW_773Hz (0x0 << 6) # define CTRL_REG2_XM_ABW_194Hz (0x1 << 6) # define CTRL_REG2_XM_ABW_362Hz (0x2 << 6) # define CTRL_REG2_XM_ABW_50Hz (0x3 << 6) # define CTRL_REG2_XM_AFS_2G (0x0 << 3) # define CTRL_REG2_XM_AFS_4G (0x1 << 3) # define CTRL_REG2_XM_AFS_6G (0x2 << 3) # define CTRL_REG2_XM_AFS_8G (0x3 << 3) # define CTRL_REG2_XM_AFS_16G (0x4 << 3) # define CTRL_REG2_XM_AST_NORMAL (0x0 << 1) # define CTRL_REG2_XM_AST_POSITIVE (0x1 << 1) # define CTRL_REG2_XM_AST_NEGATIVE (0x2 << 1) # define CTRL_REG2_XM_SIM_3WIRE (0x1 << 0) #define CTRL_REG3_XM 0x22 # define CTRL_REG3_XM_P1_BOOT (0x1 << 7) # define CTRL_REG3_XM_P1_TAP (0x1 << 6) # define CTRL_REG3_XM_P1_INT1 (0x1 << 5) # define CTRL_REG3_XM_P1_INT2 (0x1 << 4) # define CTRL_REG3_XM_P1_INTM (0x1 << 3) # define CTRL_REG3_XM_P1_DRDYA (0x1 << 2) # define CTRL_REG3_XM_P1_DRDYM (0x1 << 1) # define CTRL_REG3_XM_P1_EMPTY (0x1 << 0) #define CTRL_REG4_XM 0x23 # define CTRL_REG4_XM_P2_TAP (0x1 << 7) # define CTRL_REG4_XM_P2_INT1 (0x1 << 6) # define CTRL_REG4_XM_P2_INT2 (0x1 << 5) # define CTRL_REG4_XM_P2_INTM (0x1 << 4) # define CTRL_REG4_XM_P2_DRDYA (0x1 << 3) # define CTRL_REG4_XM_P2_DRDYM (0x1 << 2) # define CTRL_REG4_XM_P2_OVERRUN (0x1 << 1) # define CTRL_REG4_XM_P2_WTM (0x1 << 0) #define CTRL_REG5_XM 0x24 # define CTRL_REG5_XM_TEMP_EN (0x1 << 7) # define CTRL_REG5_XM_M_RES_LOW (0x0 << 5) # define CTRL_REG5_XM_M_RES_HIGH (0x3 << 5) # define CTRL_REG5_XM_ODR_3125mHz (0x0 << 2) # define CTRL_REG5_XM_ODR_6250mHz (0x1 << 2) # define CTRL_REG5_XM_ODR_12500mHz (0x2 << 2) # define CTRL_REG5_XM_ODR_25Hz (0x3 << 2) # define CTRL_REG5_XM_ODR_50Hz (0x4 << 2) # define CTRL_REG5_XM_ODR_100Hz (0x5 << 2) # define CTRL_REG5_XM_LIR2 (0x1 << 1) # define CTRL_REG5_XM_LIR1 (0x1 << 0) #define CTRL_REG6_XM 0x25 # define CTRL_REG6_XM_MFS_2Gs (0x0 << 5) # define CTRL_REG6_XM_MFS_4Gs (0x1 << 5) # define CTRL_REG6_XM_MFS_8Gs (0x2 << 5) # define CTRL_REG6_XM_MFS_12Gs (0x3 << 5) #define CTRL_REG7_XM 0x26 # define CTRL_REG7_XM_AHPM_NORMAL_RESET (0x0 << 6) # define CTRL_REG7_XM_AHPM_REFERENCE (0x1 << 6) # define CTRL_REG7_XM_AHPM_NORMAL (0x2 << 6) # define CTRL_REG7_XM_AHPM_AUTORESET (0x3 << 6) # define CTRL_REG7_XM_AFDS (0x1 << 5) # define CTRL_REG7_XM_MLP (0x1 << 2) # define CTRL_REG7_XM_MD_CONTINUOUS (0x0 << 0) # define CTRL_REG7_XM_MD_SINGLE (0x1 << 0) # define CTRL_REG7_XM_MD_POWERDOWN (0x2 << 0) #define STATUS_REG_A 0x27 # define STATUS_REG_A_ZYXAOR (0x1 << 7) # define STATUS_REG_A_ZAOR (0x1 << 6) # define STATUS_REG_A_YAOR (0x1 << 5) # define STATUS_REG_A_XAOR (0x1 << 4) # define STATUS_REG_A_ZYXADA (0x1 << 3) # define STATUS_REG_A_ZADA (0x1 << 2) # define STATUS_REG_A_YADA (0x1 << 1) # define STATUS_REG_A_XADA (0x1 << 0) #define OUT_X_L_A 0x28 #define OUT_X_H_A 0x29 #define OUT_Y_L_A 0x2A #define OUT_Y_H_A 0x2B #define OUT_Z_L_A 0x2C #define OUT_Z_H_A 0x2D #define FIFO_CTRL_REG 0x2E # define FIFO_CTRL_REG_FM_BYPASS (0x0 << 5) # define FIFO_CTRL_REG_FM_FIFO (0x1 << 5) # define FIFO_CTRL_REG_FM_STREAM (0x2 << 5) # define FIFO_CTRL_REG_FM_STREAM_TO_FIFO (0x3 << 5) # define FIFO_CTRL_REG_FM_BYPASS_TO_STREAM (0x4 << 5) # define FIFO_CTRL_REG_FTH_MASK 0x1F #define FIFO_SRC_REG 0x2F # define FIFO_SRC_REG_WTM (0x1 << 7) # define FIFO_SRC_REG_OVRN (0x1 << 6) # define FIFO_SRC_REG_EMPTY (0x1 << 5) # define FIFO_SRC_REG_FSS_MASK 0x1F #define INT_GEN_1_REG 0x30 # define INT_GEN_1_REG_AOI (0x1 << 7) # define INT_GEN_1_REG_6D (0x1 << 6) # define INT_GEN_1_REG_ZHIE_ZUPE (0x1 << 5) # define INT_GEN_1_REG_ZLIE_ZDOWNE (0x1 << 4) # define INT_GEN_1_REG_YHIE_YUPE (0x1 << 3) # define INT_GEN_1_REG_YLIE_YDOWNE (0x1 << 2) # define INT_GEN_1_REG_XHIE_XUPE (0x1 << 1) # define INT_GEN_1_REG_XLIE_XDOWNE (0x1 << 0) #define INT_GEN_1_SRC 0x31 # define INT_GEN_1_SRC_IA (0x1 << 6) # define INT_GEN_1_SRC_ZH (0x1 << 5) # define INT_GEN_1_SRC_ZL (0x1 << 4) # define INT_GEN_1_SRC_YH (0x1 << 3) # define INT_GEN_1_SRC_YL (0x1 << 2) # define INT_GEN_1_SRC_XH (0x1 << 1) # define INT_GEN_1_SRC_XL (0x1 << 0) #define INT_GEN_1_THS 0x32 #define INT_GEN_1_DURATION 0x33 #define INT_GEN_2_REG 0x34 # define INT_GEN_2_REG_AOI (0x1 << 7) # define INT_GEN_2_REG_6D (0x1 << 6) # define INT_GEN_2_REG_ZHIE_ZUPE (0x1 << 5) # define INT_GEN_2_REG_ZLIE_ZDOWNE (0x1 << 4) # define INT_GEN_2_REG_YHIE_YUPE (0x1 << 3) # define INT_GEN_2_REG_YLIE_YDOWNE (0x1 << 2) # define INT_GEN_2_REG_XHIE_XUPE (0x1 << 1) # define INT_GEN_2_REG_XLIE_XDOWNE (0x1 << 0) #define INT_GEN_2_SRC 0x35 # define INT_GEN_2_SRC_IA (0x1 << 6) # define INT_GEN_2_SRC_ZH (0x1 << 5) # define INT_GEN_2_SRC_ZL (0x1 << 4) # define INT_GEN_2_SRC_YH (0x1 << 3) # define INT_GEN_2_SRC_YL (0x1 << 2) # define INT_GEN_2_SRC_XH (0x1 << 1) # define INT_GEN_2_SRC_XL (0x1 << 0) #define INT_GEN_2_THS 0x36 #define INT_GEN_2_DURATION 0x37 #define CLICK_CFG 0x38 # define CLICK_CFG_ZD (0x1 << 5) # define CLICK_CFG_ZS (0x1 << 4) # define CLICK_CFG_YD (0x1 << 3) # define CLICK_CFG_YS (0x1 << 2) # define CLICK_CFG_XD (0x1 << 1) # define CLICK_CFG_XS (0x1 << 0) #define CLICK_SRC 0x39 # define CLICK_SRC_IA (0x1 << 6) # define CLICK_SRC_DCLICK (0x1 << 5) # define CLICK_SRC_SCLICK (0x1 << 4) # define CLICK_SRC_SIGN (0x1 << 3) # define CLICK_SRC_Z (0x1 << 2) # define CLICK_SRC_Y (0x1 << 1) # define CLICK_SRC_X (0x1 << 0) #define CLICK_THS 0x3A #define TIME_LIMIT 0x3B #define TIME_LATENCY 0x3C #define TIME_WINDOW 0x3D #define ACT_THS 0x3E #define ACT_DUR 0x3F AP_InertialSensor_LSM9DS0::AP_InertialSensor_LSM9DS0(AP_InertialSensor &imu, int drdy_pin_num_a, int drdy_pin_num_g) : AP_InertialSensor_Backend(imu), _drdy_pin_a(NULL), _drdy_pin_g(NULL), _last_accel_filter_hz(-1), _last_gyro_filter_hz(-1), _accel_filter(800, 15), _gyro_filter(760, 15), _gyro_sample_available(false), _accel_sample_available(false), _drdy_pin_num_a(drdy_pin_num_a), _drdy_pin_num_g(drdy_pin_num_g) { _product_id = AP_PRODUCT_ID_NONE; } AP_InertialSensor_Backend *AP_InertialSensor_LSM9DS0::detect(AP_InertialSensor &_imu) { int drdy_pin_num_a = -1, drdy_pin_num_g = -1; AP_InertialSensor_LSM9DS0 *sensor = new AP_InertialSensor_LSM9DS0(_imu, drdy_pin_num_a, drdy_pin_num_g); if (sensor == NULL) { return NULL; } if (!sensor->_init_sensor()) { delete sensor; return NULL; } return sensor; } bool AP_InertialSensor_LSM9DS0::_init_sensor() { _gyro_spi = hal.spi->device(AP_HAL::SPIDevice_LSM9DS0_G); _accel_spi = hal.spi->device(AP_HAL::SPIDevice_LSM9DS0_AM); _spi_sem = _gyro_spi->get_semaphore(); /* same semaphore for both */ if (_drdy_pin_num_a >= 0) { _drdy_pin_a = hal.gpio->channel(_drdy_pin_num_a); if (_drdy_pin_a == NULL) { hal.scheduler->panic("LSM9DS0: null accel data-ready GPIO channel\n"); } } if (_drdy_pin_num_g >= 0) { _drdy_pin_g = hal.gpio->channel(_drdy_pin_num_g); if (_drdy_pin_g == NULL) { hal.scheduler->panic("LSM9DS0: null gyro data-ready GPIO channel\n"); } } hal.scheduler->suspend_timer_procs(); uint8_t whoami; bool whoami_ok = true; whoami = _register_read_g(WHO_AM_I_G); if (whoami != LSM9DS0_G_WHOAMI) { hal.console->printf("LSM9DS0: unexpected gyro WHOAMI 0x%x\n", (unsigned)whoami); whoami_ok = false; } whoami = _register_read_xm(WHO_AM_I_XM); if (whoami != LSM9DS0_XM_WHOAMI) { hal.console->printf("LSM9DS0: unexpected acc/mag WHOAMI 0x%x\n", (unsigned)whoami); whoami_ok = false; } if (!whoami_ok) return false; uint8_t tries = 0; bool a_ready = false; bool g_ready = false; do { bool success = _hardware_init(); if (success) { hal.scheduler->delay(10); if (!_spi_sem->take(100)) { hal.console->printf("LSM9DS0: Unable to get semaphore\n"); return false; } if (!a_ready) { a_ready = _accel_data_ready(); } if (!g_ready) { g_ready = _gyro_data_ready(); } if (a_ready && g_ready) { _spi_sem->give(); break; } else { hal.console->printf("LSM9DS0 startup failed: no data ready\n"); } _spi_sem->give(); } if (tries++ > 5) { hal.console->printf("failed to boot LSM9DS0 5 times\n"); return false; } } while (1); hal.scheduler->resume_timer_procs(); _gyro_instance = _imu.register_gyro(); _accel_instance = _imu.register_accel(); _set_accel_max_abs_offset(_accel_instance, 5.0f); #if LSM9DS0_DEBUG _dump_registers(); #endif /* start the timer process to read samples */ hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_LSM9DS0::_poll_data, void)); return true; } bool AP_InertialSensor_LSM9DS0::_hardware_init() { if (!_spi_sem->take(100)) { hal.console->printf("LSM9DS0: Unable to get semaphore\n"); return false; } _gyro_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); _accel_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW); _gyro_init(); _accel_init(); _gyro_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _accel_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH); _spi_sem->give(); return true; } uint8_t AP_InertialSensor_LSM9DS0::_register_read_xm( uint8_t reg ) { uint8_t addr = reg | 0x80; /* set read bit */ uint8_t tx[2]; uint8_t rx[2]; tx[0] = addr; tx[1] = 0; _accel_spi->transaction(tx, rx, 2); return rx[1]; } uint8_t AP_InertialSensor_LSM9DS0::_register_read_g( uint8_t reg ) { uint8_t addr = reg | 0x80; /* set read bit */ uint8_t tx[2]; uint8_t rx[2]; tx[0] = addr; tx[1] = 0; _gyro_spi->transaction(tx, rx, 2); return rx[1]; } void AP_InertialSensor_LSM9DS0::_register_write_xm(uint8_t reg, uint8_t val) { uint8_t tx[2]; uint8_t rx[2]; tx[0] = reg; tx[1] = val; _accel_spi->transaction(tx, rx, 2); } void AP_InertialSensor_LSM9DS0::_register_write_g(uint8_t reg, uint8_t val) { uint8_t tx[2]; uint8_t rx[2]; tx[0] = reg; tx[1] = val; _gyro_spi->transaction(tx, rx, 2); } void AP_InertialSensor_LSM9DS0::_gyro_init() { _register_write_g(CTRL_REG1_G, CTRL_REG1_G_DR_760Hz_BW_50Hz | CTRL_REG1_G_PD | CTRL_REG1_G_ZEN | CTRL_REG1_G_YEN | CTRL_REG1_G_XEN); hal.scheduler->delay(1); _register_write_g(CTRL_REG2_G, 0x00); hal.scheduler->delay(1); /* * Gyro data ready on DRDY_G */ _register_write_g(CTRL_REG3_G, CTRL_REG3_G_I2_DRDY); hal.scheduler->delay(1); _register_write_g(CTRL_REG4_G, CTRL_REG4_G_BDU | CTRL_REG4_G_FS_2000DPS); _set_gyro_scale(G_SCALE_2000DPS); hal.scheduler->delay(1); _register_write_g(CTRL_REG5_G, 0x00); hal.scheduler->delay(1); } void AP_InertialSensor_LSM9DS0::_accel_init() { _register_write_xm(CTRL_REG0_XM, 0x00); hal.scheduler->delay(1); _register_write_xm(CTRL_REG1_XM, CTRL_REG1_XM_AODR_800Hz | CTRL_REG1_XM_BDU | CTRL_REG1_XM_AZEN | CTRL_REG1_XM_AYEN | CTRL_REG1_XM_AXEN); hal.scheduler->delay(1); _register_write_xm(CTRL_REG2_XM, CTRL_REG2_XM_ABW_50Hz | CTRL_REG2_XM_AFS_16G); _set_accel_scale(A_SCALE_16G); hal.scheduler->delay(1); /* Accel data ready on INT1 */ _register_write_xm(CTRL_REG3_XM, CTRL_REG3_XM_P1_DRDYA); hal.scheduler->delay(1); } void AP_InertialSensor_LSM9DS0::_set_gyro_scale(gyro_scale scale) { /* scales values from datasheet in mdps/digit */ switch (scale) { case G_SCALE_245DPS: _gyro_scale = 8.75; break; case G_SCALE_500DPS: _gyro_scale = 17.50; break; case G_SCALE_2000DPS: _gyro_scale = 70; break; } _gyro_scale /= 1000; /* convert mdps/digit to dps/digit */ _gyro_scale *= DEG_TO_RAD; /* convert dps/digit to (rad/s)/digit */ } void AP_InertialSensor_LSM9DS0::_set_accel_scale(accel_scale scale) { /* * Possible accelerometer scales (and their register bit settings) are: * 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an * algorithm to calculate g/(ADC tick) based on that 3-bit value: */ _accel_scale = (((float) scale + 1.0f) * 2.0f) / 32768.0f; if (scale == A_SCALE_16G) { _accel_scale = 0.000732; /* the datasheet shows an exception for +-16G */ } _accel_scale *= GRAVITY_MSS; /* convert to G/LSB to (m/s/s)/LSB */ } /** * Timer process to poll for new data from the LSM9DS0. */ void AP_InertialSensor_LSM9DS0::_poll_data() { bool drdy_is_from_reg = _drdy_pin_num_a < 0 || _drdy_pin_num_g < 0; bool gyro_ready; bool accel_ready; if (drdy_is_from_reg && !_spi_sem->take_nonblocking()) { /* * the semaphore being busy is an expected condition when the * mainline code is calling wait_for_sample() which will * grab the semaphore. We return now and rely on the mainline * code grabbing the latest sample. */ return; } gyro_ready = _gyro_data_ready(); accel_ready = _accel_data_ready(); if (gyro_ready || accel_ready) { if (!drdy_is_from_reg && !_spi_sem->take_nonblocking()) { return; } if (gyro_ready) { _read_data_transaction_g(); } if (accel_ready) { _read_data_transaction_a(); } _spi_sem->give(); } else if(drdy_is_from_reg) { _spi_sem->give(); } } bool AP_InertialSensor_LSM9DS0::_accel_data_ready() { if (_drdy_pin_a != NULL) { return _drdy_pin_a->read() != 0; } else { uint8_t status = _register_read_xm(STATUS_REG_A); return status & STATUS_REG_A_ZYXADA; } } bool AP_InertialSensor_LSM9DS0::_gyro_data_ready() { if (_drdy_pin_g != NULL) { return _drdy_pin_g->read() != 0; } else { uint8_t status = _register_read_xm(STATUS_REG_G); return status & STATUS_REG_G_ZYXDA; } } void AP_InertialSensor_LSM9DS0::_accel_raw_data(struct sensor_raw_data *raw_data) { struct __attribute__((packed)) { uint8_t reg; struct sensor_raw_data data; } tx = {.reg = OUT_X_L_A | 0xC0, .data = {}}, rx; _accel_spi->transaction((uint8_t *)&tx, (uint8_t *)&rx, 7); *raw_data = rx.data; } void AP_InertialSensor_LSM9DS0::_gyro_raw_data(struct sensor_raw_data *raw_data) { struct __attribute__((packed)) { uint8_t reg; struct sensor_raw_data data; } tx = {.reg = OUT_X_L_G | 0xC0, .data = {}}, rx; _gyro_spi->transaction((uint8_t *)&tx, (uint8_t *)&rx, 7); *raw_data = rx.data; } void AP_InertialSensor_LSM9DS0::_read_data_transaction_a() { struct sensor_raw_data raw_data; _accel_raw_data(&raw_data); Vector3f accel_data(raw_data.x, -raw_data.y, -raw_data.z); accel_data *= _accel_scale; _rotate_and_correct_accel(_accel_instance, accel_data); _notify_new_accel_raw_sample(_accel_instance, accel_data); _accel_filtered = _accel_filter.apply(accel_data); _accel_sample_available = true; } /* * read from the data registers and update filtered data */ void AP_InertialSensor_LSM9DS0::_read_data_transaction_g() { struct sensor_raw_data raw_data; _gyro_raw_data(&raw_data); Vector3f gyro_data(raw_data.x, -raw_data.y, -raw_data.z); gyro_data *= _gyro_scale; _rotate_and_correct_gyro(_gyro_instance, gyro_data); _gyro_filtered = _gyro_filter.apply(gyro_data); _gyro_sample_available = true; } bool AP_InertialSensor_LSM9DS0::update() { _accel_sample_available = false; _gyro_sample_available = false; _publish_gyro(_gyro_instance, _gyro_filtered); _publish_accel(_accel_instance, _accel_filtered); if (_last_accel_filter_hz != _accel_filter_cutoff()) { _set_accel_filter(_accel_filter_cutoff()); _last_accel_filter_hz = _accel_filter_cutoff(); } if (_last_gyro_filter_hz != _gyro_filter_cutoff()) { _set_gyro_filter(_gyro_filter_cutoff()); _last_gyro_filter_hz = _gyro_filter_cutoff(); } return true; } /* * set the accel filter frequency */ void AP_InertialSensor_LSM9DS0::_set_accel_filter(uint8_t filter_hz) { _accel_filter.set_cutoff_frequency(800, filter_hz); } /* * set the gyro filter frequency */ void AP_InertialSensor_LSM9DS0::_set_gyro_filter(uint8_t filter_hz) { _gyro_filter.set_cutoff_frequency(760, filter_hz); } #if LSM9DS0_DEBUG /* dump all config registers - used for debug */ void AP_InertialSensor_LSM9DS0::_dump_registers(void) { hal.console->println_P(PSTR("LSM9DS0 registers:")); hal.console->println_P(PSTR("Gyroscope registers:")); const uint8_t first = OUT_TEMP_L_XM; const uint8_t last = ACT_DUR; for (uint8_t reg=first; reg<=last; reg++) { uint8_t v = _register_read_g(reg); hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v); if ((reg - (first-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); hal.console->println_P(PSTR("Accelerometer and Magnetometers registers:")); for (uint8_t reg=first; reg<=last; reg++) { uint8_t v = _register_read_xm(reg); hal.console->printf_P(PSTR("%02x:%02x "), (unsigned)reg, (unsigned)v); if ((reg - (first-1)) % 16 == 0) { hal.console->println(); } } hal.console->println(); } #endif #endif /* CONFIG_HAL_BOARD == HAL_BOARD_LINUX */