#include #include "GPIO.h" #if CONFIG_HAL_BOARD == HAL_BOARD_LINUX #include "RCOutput_PCA9685.h" #include #include #include #include #include #include #include #include #include #define PCA9685_RA_MODE1 0x00 #define PCA9685_RA_MODE2 0x01 #define PCA9685_RA_LED0_ON_L 0x06 #define PCA9685_RA_LED0_ON_H 0x07 #define PCA9685_RA_LED0_OFF_L 0x08 #define PCA9685_RA_LED0_OFF_H 0x09 #define PCA9685_RA_ALL_LED_ON_L 0xFA #define PCA9685_RA_ALL_LED_ON_H 0xFB #define PCA9685_RA_ALL_LED_OFF_L 0xFC #define PCA9685_RA_ALL_LED_OFF_H 0xFD #define PCA9685_RA_PRE_SCALE 0xFE #define PCA9685_MODE1_RESTART_BIT (1 << 7) #define PCA9685_MODE1_EXTCLK_BIT (1 << 6) #define PCA9685_MODE1_AI_BIT (1 << 5) #define PCA9685_MODE1_SLEEP_BIT (1 << 4) #define PCA9685_MODE1_SUB1_BIT (1 << 3) #define PCA9685_MODE1_SUB2_BIT (1 << 2) #define PCA9685_MODE1_SUB3_BIT (1 << 1) #define PCA9685_MODE1_ALLCALL_BIT (1 << 0) #define PCA9685_ALL_LED_OFF_H_SHUT (1 << 4) #define PCA9685_MODE2_INVRT_BIT (1 << 4) #define PCA9685_MODE2_OCH_BIT (1 << 3) #define PCA9685_MODE2_OUTDRV_BIT (1 << 2) #define PCA9685_MODE2_OUTNE1_BIT (1 << 1) #define PCA9685_MODE2_OUTNE0_BIT (1 << 0) /* * Drift for internal oscillator * see: https://github.com/diydrones/ardupilot/commit/50459bdca0b5a1adf95 * and https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library/issues/11 */ #define PCA9685_INTERNAL_CLOCK (1.04f * 25000000.f) #define PCA9685_EXTERNAL_CLOCK 24576000.f using namespace Linux; #define PWM_CHAN_COUNT 16 static const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; LinuxRCOutput_PCA9685::LinuxRCOutput_PCA9685(uint8_t addr, bool external_clock, uint8_t channel_offset, int16_t oe_pin_number) : _i2c_sem(NULL), _enable_pin(NULL), _frequency(50), _pulses_buffer(new uint16_t[PWM_CHAN_COUNT - channel_offset]), _addr(addr), _external_clock(external_clock), _channel_offset(channel_offset), _oe_pin_number(oe_pin_number) { if (_external_clock) _osc_clock = PCA9685_EXTERNAL_CLOCK; else _osc_clock = PCA9685_INTERNAL_CLOCK; } LinuxRCOutput_PCA9685::~LinuxRCOutput_PCA9685() { delete [] _pulses_buffer; } void LinuxRCOutput_PCA9685::init(void* machtnicht) { _i2c_sem = hal.i2c->get_semaphore(); if (_i2c_sem == NULL) { hal.scheduler->panic(PSTR("PANIC: RCOutput_PCA9685 did not get " "valid I2C semaphore!")); return; /* never reached */ } reset_all_channels(); /* Set the initial frequency */ set_freq(0, 50); /* Enable PCA9685 PWM */ if (_oe_pin_number != -1) { _enable_pin = hal.gpio->channel(_oe_pin_number); _enable_pin->mode(HAL_GPIO_OUTPUT); _enable_pin->write(0); } } void LinuxRCOutput_PCA9685::reset_all_channels() { if (!_i2c_sem->take(10)) { return; } uint8_t data[4] = {0x00, 0x00, 0x00, 0x00}; hal.i2c->writeRegisters(_addr, PCA9685_RA_ALL_LED_ON_L, 4, data); /* Wait for the last pulse to end */ hal.scheduler->delay(2); _i2c_sem->give(); } void LinuxRCOutput_PCA9685::set_freq(uint32_t chmask, uint16_t freq_hz) { /* Correctly finish last pulses */ for (int i = 0; i < (PWM_CHAN_COUNT - _channel_offset); i++) { write(i, _pulses_buffer[i]); } if (!_i2c_sem->take(10)) { return; } /* Shutdown before sleeping. * see p.14 of PCA9685 product datasheet */ hal.i2c->writeRegister(_addr, PCA9685_RA_ALL_LED_OFF_H, PCA9685_ALL_LED_OFF_H_SHUT); /* Put PCA9685 to sleep (required to write prescaler) */ hal.i2c->writeRegister(_addr, PCA9685_RA_MODE1, PCA9685_MODE1_SLEEP_BIT); /* Calculate prescale and save frequency using this value: it may be * different from @freq_hz due to rounding/ceiling. We use ceil() rather * than round() so the resulting frequency is never greater than @freq_hz */ uint8_t prescale = ceil(_osc_clock / (4096 * freq_hz)) - 1; _frequency = _osc_clock / (4096 * (prescale + 1)); /* Write prescale value to match frequency */ hal.i2c->writeRegister(_addr, PCA9685_RA_PRE_SCALE, prescale); if (_external_clock) { /* Enable external clocking */ hal.i2c->writeRegister(_addr, PCA9685_RA_MODE1, PCA9685_MODE1_SLEEP_BIT | PCA9685_MODE1_EXTCLK_BIT); } /* Restart the device to apply new settings and enable auto-incremented write */ hal.i2c->writeRegister(_addr, PCA9685_RA_MODE1, PCA9685_MODE1_RESTART_BIT | PCA9685_MODE1_AI_BIT); _i2c_sem->give(); } uint16_t LinuxRCOutput_PCA9685::get_freq(uint8_t ch) { return _frequency; } void LinuxRCOutput_PCA9685::enable_ch(uint8_t ch) { } void LinuxRCOutput_PCA9685::disable_ch(uint8_t ch) { write(ch, 0); } void LinuxRCOutput_PCA9685::write(uint8_t ch, uint16_t period_us) { if (ch >= (PWM_CHAN_COUNT - _channel_offset)) { return; } _pulses_buffer[ch] = period_us; _pending_write_mask |= (1U << ch); if (!_corking) push(); } void LinuxRCOutput_PCA9685::cork() { _corking = true; } void LinuxRCOutput_PCA9685::push() { _corking = false; if (_pending_write_mask == 0) return; // Calculate the number of channels for this transfer. uint8_t max_ch = (sizeof(unsigned) * 8) - __builtin_clz(_pending_write_mask); uint8_t min_ch = __builtin_ctz(_pending_write_mask); /* * scratch buffer size is always for all the channels, but we write only * from min_ch to max_ch */ uint8_t data[PWM_CHAN_COUNT * 4] = { }; for (unsigned ch = min_ch; ch < max_ch; ch++) { uint16_t period_us = _pulses_buffer[ch]; uint16_t length = 0; if (period_us) length = round((period_us * 4096) / (1000000.f / _frequency)) - 1; uint8_t *d = &data[ch * 4]; *d++ = 0; *d++ = 0; *d++ = length & 0xFF; *d++ = length >> 8; } if (!_i2c_sem->take_nonblocking()) { hal.console->printf("RCOutput: Unable to get bus semaphore"); return; } hal.i2c->writeRegisters(_addr, PCA9685_RA_LED0_ON_L + 4 * (_channel_offset + min_ch), (max_ch - min_ch) * 4, &data[min_ch * 4]); _i2c_sem->give(); _pending_write_mask = 0; } uint16_t LinuxRCOutput_PCA9685::read(uint8_t ch) { return _pulses_buffer[ch]; } void LinuxRCOutput_PCA9685::read(uint16_t* period_us, uint8_t len) { for (int i = 0; i < len; i++) period_us[i] = read(0 + i); } #endif