/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "AP_Proximity_MAV.h" #include #include #include extern const AP_HAL::HAL& hal; #define PROXIMITY_MAV_TIMEOUT_MS 500 // distance messages must arrive within this many milliseconds /* The constructor also initialises the proximity sensor. Note that this constructor is not called until detect() returns true, so we already know that we should setup the proximity sensor */ AP_Proximity_MAV::AP_Proximity_MAV(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) : AP_Proximity_Backend(_frontend, _state) { } // update the state of the sensor void AP_Proximity_MAV::update(void) { // check for timeout and set health status if ((_last_update_ms == 0 || (AP_HAL::millis() - _last_update_ms > PROXIMITY_MAV_TIMEOUT_MS)) && (_last_upward_update_ms == 0 || (AP_HAL::millis() - _last_upward_update_ms > PROXIMITY_MAV_TIMEOUT_MS))) { set_status(AP_Proximity::Proximity_NoData); } else { set_status(AP_Proximity::Proximity_Good); } } // get distance upwards in meters. returns true on success bool AP_Proximity_MAV::get_upward_distance(float &distance) const { if ((_last_upward_update_ms != 0) && (AP_HAL::millis() - _last_upward_update_ms <= PROXIMITY_MAV_TIMEOUT_MS)) { distance = _distance_upward; return true; } return false; } // handle mavlink DISTANCE_SENSOR messages void AP_Proximity_MAV::handle_msg(const mavlink_message_t &msg) { if (msg.msgid == MAVLINK_MSG_ID_DISTANCE_SENSOR) { mavlink_distance_sensor_t packet; mavlink_msg_distance_sensor_decode(&msg, &packet); // store distance to appropriate sector based on orientation field if (packet.orientation <= MAV_SENSOR_ROTATION_YAW_315) { uint8_t sector = packet.orientation; _angle[sector] = sector * 45; _distance[sector] = packet.current_distance * 0.01f; _distance_min = packet.min_distance * 0.01f; _distance_max = packet.max_distance * 0.01f; _distance_valid[sector] = (_distance[sector] >= _distance_min) && (_distance[sector] <= _distance_max); _last_update_ms = AP_HAL::millis(); update_boundary_for_sector(sector, true); } // store upward distance if (packet.orientation == MAV_SENSOR_ROTATION_PITCH_90) { _distance_upward = packet.current_distance * 0.01f; _last_upward_update_ms = AP_HAL::millis(); } return; } if (msg.msgid == MAVLINK_MSG_ID_OBSTACLE_DISTANCE) { mavlink_obstacle_distance_t packet; mavlink_msg_obstacle_distance_decode(&msg, &packet); // check increment (message's sector width) float increment; if (!is_zero(packet.increment_f)) { // use increment float increment = packet.increment_f; } else if (packet.increment != 0) { // use increment uint8_t increment = packet.increment; } else { // invalid increment return; } const float MAX_DISTANCE = 9999.0f; const uint8_t total_distances = MIN(((360.0f / fabs(increment)) + 0.5f), MAVLINK_MSG_OBSTACLE_DISTANCE_FIELD_DISTANCES_LEN); // usually 72 // set distance min and max _distance_min = packet.min_distance * 0.01f; _distance_max = packet.max_distance * 0.01f; _last_update_ms = AP_HAL::millis(); // get user configured yaw correction from front end const float param_yaw_offset = constrain_float(frontend.get_yaw_correction(state.instance), -360.0f, +360.0f); const float yaw_correction = wrap_360(param_yaw_offset + packet.angle_offset); if (frontend.get_orientation(state.instance) != 0) { increment *= -1; } Location current_loc; float current_vehicle_bearing; const bool database_ready = database_prepare_for_push(current_loc, current_vehicle_bearing); // initialise updated array and proximity sector angles (to closest object) and distances bool sector_updated[_num_sectors]; float sector_width_half[_num_sectors]; for (uint8_t i = 0; i < _num_sectors; i++) { sector_updated[i] = false; sector_width_half[i] = _sector_width_deg[i] * 0.5f; _angle[i] = _sector_middle_deg[i]; _distance[i] = MAX_DISTANCE; } // iterate over message's sectors for (uint8_t j = 0; j < total_distances; j++) { const uint16_t distance_cm = packet.distances[j]; if (distance_cm == 0 || distance_cm == 65535 || distance_cm < packet.min_distance || distance_cm > packet.max_distance) { // sanity check failed, ignore this distance value continue; } const float packet_distance_m = distance_cm * 0.01f; const float mid_angle = wrap_360((float)j * increment + yaw_correction); // iterate over proximity sectors for (uint8_t i = 0; i < _num_sectors; i++) { float angle_diff = fabsf(wrap_180(_sector_middle_deg[i] - mid_angle)); // update distance array sector with shortest distance from message if ((angle_diff <= sector_width_half[i]) && (packet_distance_m < _distance[i])) { _distance[i] = packet_distance_m; _angle[i] = mid_angle; sector_updated[i] = true; } } // update Object Avoidance database with Earth-frame point if (database_ready) { database_push(mid_angle, packet_distance_m, _last_update_ms, current_loc, current_vehicle_bearing); } } // update proximity sectors validity and boundary point for (uint8_t i = 0; i < _num_sectors; i++) { _distance_valid[i] = (_distance[i] >= _distance_min) && (_distance[i] <= _distance_max); if (sector_updated[i]) { update_boundary_for_sector(i, false); } } } }