/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* backend driver for airspeed from a I2C MS4525D0 sensor */ #include "AP_Airspeed_I2C.h" #include #include #include #include #include #include extern const AP_HAL::HAL &hal; #define MS4525D0_I2C_ADDR 0x28 #ifdef HAL_AIRSPEED_MS4515DO_I2C_BUS #define MS4525D0_I2C_BUS HAL_AIRSPEED_MS4515DO_I2C_BUS #else #define MS4525D0_I2C_BUS 1 #endif AP_Airspeed_I2C::AP_Airspeed_I2C(const AP_Float &psi_range) : _psi_range(psi_range) { } // probe and initialise the sensor bool AP_Airspeed_I2C::init() { _dev = hal.i2c_mgr->get_device(MS4525D0_I2C_BUS, MS4525D0_I2C_ADDR); // take i2c bus sempahore if (!_dev || !_dev->get_semaphore()->take(200)) { return false; } _measure(); hal.scheduler->delay(10); _collect(); _dev->get_semaphore()->give(); if (_last_sample_time_ms != 0) { hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_Airspeed_I2C::_timer, void)); return true; } return false; } // start a measurement void AP_Airspeed_I2C::_measure() { _measurement_started_ms = 0; uint8_t cmd = 0; if (_dev->transfer(&cmd, 1, nullptr, 0)) { _measurement_started_ms = AP_HAL::millis(); } } // read the values from the sensor void AP_Airspeed_I2C::_collect() { uint8_t data[4]; _measurement_started_ms = 0; if (!_dev->transfer(nullptr, 0, data, sizeof(data))) { return; } uint8_t status = (data[0] & 0xC0) >> 6; if (status == 2 || status == 3) { return; } int16_t dp_raw, dT_raw; dp_raw = (data[0] << 8) + data[1]; dp_raw = 0x3FFF & dp_raw; dT_raw = (data[2] << 8) + data[3]; dT_raw = (0xFFE0 & dT_raw) >> 5; const float P_max = _psi_range.get(); const float P_min = - P_max; const float PSI_to_Pa = 6894.757f; /* this equation is an inversion of the equation in the pressure transfer function figure on page 4 of the datasheet We negate the result so that positive differential pressures are generated when the bottom port is used as the static port on the pitot and top port is used as the dynamic port */ float diff_press_PSI = -((dp_raw - 0.1f*16383) * (P_max-P_min)/(0.8f*16383) + P_min); _pressure = diff_press_PSI * PSI_to_Pa; _temperature = ((200.0f * dT_raw) / 2047) - 50; _last_sample_time_ms = AP_HAL::millis(); } // 1kHz timer void AP_Airspeed_I2C::_timer() { if (!_dev->get_semaphore()->take_nonblocking()) { return; } if (_measurement_started_ms == 0) { _measure(); _dev->get_semaphore()->give(); return; } if ((AP_HAL::millis() - _measurement_started_ms) > 10) { _collect(); // start a new measurement _measure(); } _dev->get_semaphore()->give(); } // return the current differential_pressure in Pascal bool AP_Airspeed_I2C::get_differential_pressure(float &pressure) { if ((AP_HAL::millis() - _last_sample_time_ms) > 100) { return false; } pressure = _pressure; return true; } // return the current temperature in degrees C, if available bool AP_Airspeed_I2C::get_temperature(float &temperature) { if ((AP_HAL::millis() - _last_sample_time_ms) > 100) { return false; } temperature = _temperature; return true; }