#include "Sub.h" /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * ArduSub parameter definitions * */ #define GSCALAR(v, name, def) { sub.g.v.vtype, name, Parameters::k_param_ ## v, &sub.g.v, {def_value : def} } #define ASCALAR(v, name, def) { sub.aparm.v.vtype, name, Parameters::k_param_ ## v, (const void *)&sub.aparm.v, {def_value : def} } #define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &sub.g.v, {group_info : class::var_info} } #define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, (const void *)&sub.v, {group_info : class::var_info} } #define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, (const void *)&sub.v, {group_info : class::var_info} } const AP_Param::Info Sub::var_info[] = { // @Param: SURFACE_DEPTH // @DisplayName: Depth reading at surface // @Description: The depth the external pressure sensor will read when the vehicle is considered at the surface (in centimeters) // @Units: cm // @Range: -100 0 // @User: Standard GSCALAR(surface_depth, "SURFACE_DEPTH", SURFACE_DEPTH_DEFAULT), // @Param: SYSID_SW_MREV // @DisplayName: Eeprom format version number // @Description: This value is incremented when changes are made to the eeprom format // @User: Advanced // @ReadOnly: True GSCALAR(format_version, "SYSID_SW_MREV", 0), // @Param: SYSID_SW_TYPE // @DisplayName: Software Type // @Description: This is used by the ground station to recognise the software type (eg ArduPlane vs ArduCopter) // @Values: 0:ArduPlane,4:AntennaTracker,10:Copter,20:Rover,40:ArduSub // @User: Advanced // @ReadOnly: True GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type), // @Param: SYSID_THISMAV // @DisplayName: MAVLink system ID of this vehicle // @Description: Allows setting an individual MAVLink system id for this vehicle to distinguish it from others on the same network // @Range: 1 255 // @User: Advanced GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID), // @Param: SYSID_MYGCS // @DisplayName: My ground station number // @Description: Allows restricting radio overrides to only come from my ground station // @User: Advanced GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255), // @Param: PILOT_THR_FILT // @DisplayName: Throttle filter cutoff // @Description: Throttle filter cutoff (Hz) - active whenever altitude control is inactive - 0 to disable // @User: Advanced // @Units: Hz // @Range: 0 10 // @Increment: .5 GSCALAR(throttle_filt, "PILOT_THR_FILT", 0), // @Group: SERIAL // @Path: ../libraries/AP_SerialManager/AP_SerialManager.cpp GOBJECT(serial_manager, "SERIAL", AP_SerialManager), // @Param: GCS_PID_MASK // @DisplayName: GCS PID tuning mask // @Description: bitmask of PIDs to send MAVLink PID_TUNING messages for // @User: Advanced // @Values: 0:None,1:Roll,2:Pitch,4:Yaw // @Bitmask: 0:Roll,1:Pitch,2:Yaw GSCALAR(gcs_pid_mask, "GCS_PID_MASK", 0), // @Param: RNGFND_GAIN // @DisplayName: Rangefinder gain // @Description: Used to adjust the speed with which the target altitude is changed when objects are sensed below the sub // @Range: 0.01 2.0 // @Increment: 0.01 // @User: Standard GSCALAR(rangefinder_gain, "RNGFND_GAIN", RANGEFINDER_GAIN_DEFAULT), // @Param: FS_BATT_ENABLE // @DisplayName: Battery Failsafe Enable // @Description: Controls whether failsafe will be invoked when battery voltage or current runs low // @Values: 0:Disabled,1:Warn only,2:Disarm,3:Enter surface mode // @User: Standard GSCALAR(failsafe_battery_enabled, "FS_BATT_ENABLE", FS_BATT_DISABLED), // @Param: FS_BATT_VOLTAGE // @DisplayName: Failsafe battery voltage // @Description: Battery voltage to trigger failsafe. Set to 0 to disable battery voltage failsafe. // @Units: Volts // @Increment: 0.1 // @User: Standard GSCALAR(fs_batt_voltage, "FS_BATT_VOLTAGE", FS_BATT_VOLTAGE_DEFAULT), // @Param: FS_BATT_MAH // @DisplayName: Failsafe battery milliAmpHours // @Description: Battery capacity remaining to trigger failsafe. Set to 0 to disable battery remaining failsafe. // @Units: mAh // @Increment: 50 // @User: Standard GSCALAR(fs_batt_mah, "FS_BATT_MAH", FS_BATT_MAH_DEFAULT), // @Param: FS_GCS_ENABLE // @DisplayName: Ground Station Failsafe Enable // @Description: Controls what action to take when GCS heartbeat is lost. // @Values: 0:Disabled,1:Warn only,2:Disarm,3:Enter depth hold mode,4:Enter surface mode // @User: Standard GSCALAR(failsafe_gcs, "FS_GCS_ENABLE", FS_GCS_DISARM), // @Param: FS_LEAK_ENABLE // @DisplayName: Leak Failsafe Enable // @Description: Controls what action to take if a leak is detected. // @Values: 0:Disabled,1:Warn only,2:Enter surface mode // @User: Standard GSCALAR(failsafe_leak, "FS_LEAK_ENABLE", FS_LEAK_WARN_ONLY), // @Param: FS_PRESS_ENABLE // @DisplayName: Internal Pressure Failsafe Enable // @Description: Controls what action to take if internal pressure exceeds FS_PRESS_MAX parameter. // @Values: 0:Disabled,1:Warn only // @User: Standard GSCALAR(failsafe_pressure, "FS_PRESS_ENABLE", FS_PRESS_DISABLED), // @Param: FS_TEMP_ENABLE // @DisplayName: Internal Temperature Failsafe Enable // @Description: Controls what action to take if internal temperature exceeds FS_TEMP_MAX parameter. // @Values: 0:Disabled,1:Warn only // @User: Standard GSCALAR(failsafe_temperature, "FS_TEMP_ENABLE", FS_TEMP_DISABLED), // @Param: FS_PRESS_MAX // @DisplayName: Internal Pressure Failsafe Threshold // @Description: The maximum internal pressure allowed before triggering failsafe. Failsafe action is determined by FS_PRESS_ENABLE parameter // @Units: Pascal // @User: Standard GSCALAR(failsafe_pressure_max, "FS_PRESS_MAX", FS_PRESS_MAX_DEFAULT), // @Param: FS_TEMP_MAX // @DisplayName: Internal Temperature Failsafe Threshold // @Description: The maximum internal temperature allowed before triggering failsafe. Failsafe action is determined by FS_TEMP_ENABLE parameter. // @Units: Degrees Centigrade // @User: Standard GSCALAR(failsafe_temperature_max, "FS_TEMP_MAX", FS_TEMP_MAX_DEFAULT), // @Param: FS_TERRAIN_ENAB // @DisplayName: Terrain Failsafe Enable // @Description: Controls what action to take if terrain information is lost during AUTO mode // @Values: 0:Disarm, 1:Hold Position, 2:Surface // @User: Standard GSCALAR(failsafe_terrain, "FS_TERRAIN_ENAB", FS_TERRAIN_DISARM), // @Param: FS_PILOT_INPUT // @DisplayName: Pilot input failsafe action // @Description: Controls what action to take if no pilot input has been received after the timeout period specified by the FS_PILOT_TIMEOUT parameter // @Values: 0:Disabled, 1:Warn Only, 2:Disarm // @User: Standard GSCALAR(failsafe_pilot_input, "FS_PILOT_INPUT", FS_PILOT_INPUT_DISARM), // @Param: FS_PILOT_TIMEOUT // @DisplayName: Timeout for activation of pilot input failsafe // @Description: Controls the maximum interval between received pilot inputs before the failsafe action is triggered // @Units: Seconds // @Range: 0.1 3.0 // @User: Standard GSCALAR(failsafe_pilot_input_timeout, "FS_PILOT_TIMEOUT", 3.0f), // @Param: XTRACK_ANG_LIM // @DisplayName: Crosstrack correction angle limit // @Description: Maximum allowed angle (in degrees) between current track and desired heading during waypoint navigation // @Range: 10 90 // @User: Standard GSCALAR(xtrack_angle_limit,"XTRACK_ANG_LIM", 45), // @Param: MAG_ENABLE // @DisplayName: Compass enable/disable // @Description: Setting this to Enabled(1) will enable the compass. Setting this to Disabled(0) will disable the compass // @Values: 0:Disabled,1:Enabled // @User: Standard GSCALAR(compass_enabled, "MAG_ENABLE", ENABLED), // @Param: WP_YAW_BEHAVIOR // @DisplayName: Yaw behaviour during missions // @Description: Determines how the autopilot controls the yaw during missions and RTL // @Values: 0:Never change yaw, 1:Face next waypoint, 2:Face next waypoint except RTL, 3:Face along GPS course, 4:Correct crosstrack error // @User: Standard GSCALAR(wp_yaw_behavior, "WP_YAW_BEHAVIOR", WP_YAW_BEHAVIOR_DEFAULT), // @Param: PILOT_VELZ_MAX // @DisplayName: Pilot maximum vertical speed // @Description: The maximum vertical velocity the pilot may request in cm/s // @Units: Centimeters/Second // @Range: 50 500 // @Increment: 10 // @User: Standard GSCALAR(pilot_velocity_z_max, "PILOT_VELZ_MAX", PILOT_VELZ_MAX), // @Param: PILOT_ACCEL_Z // @DisplayName: Pilot vertical acceleration // @Description: The vertical acceleration used when pilot is controlling the altitude // @Units: cm/s/s // @Range: 50 500 // @Increment: 10 // @User: Standard GSCALAR(pilot_accel_z, "PILOT_ACCEL_Z", PILOT_ACCEL_Z_DEFAULT), // @Param: THR_DZ // @DisplayName: Throttle deadzone // @Description: The deadzone above and below mid throttle. Used in AltHold, Loiter, PosHold flight modes // @User: Standard // @Range: 0 300 // @Units: pwm // @Increment: 1 GSCALAR(throttle_deadzone, "THR_DZ", THR_DZ_DEFAULT), // @Param: LOG_BITMASK // @DisplayName: Log bitmask // @Description: 4 byte bitmap of log types to enable // @Values: 830:Default,894:Default+RCIN,958:Default+IMU,1854:Default+Motors,-6146:NearlyAll-AC315,45054:NearlyAll,131071:All+FastATT,262142:All+MotBatt,393214:All+FastIMU,397310:All+FastIMU+PID,655358:All+FullIMU,0:Disabled // @Bitmask: 0:ATTITUDE_FAST,1:ATTITUDE_MED,2:GPS,3:PM,4:CTUN,5:NTUN,6:RCIN,7:IMU,8:CMD,9:CURRENT,10:RCOUT,11:OPTFLOW,12:PID,13:COMPASS,14:INAV,15:CAMERA,17:MOTBATT,18:IMU_FAST,19:IMU_RAW // @User: Standard GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK), // @Param: ANGLE_MAX // @DisplayName: Angle Max // @Description: Maximum lean angle in all flight modes // @Units: Centi-degrees // @Range: 1000 8000 // @User: Advanced ASCALAR(angle_max, "ANGLE_MAX", DEFAULT_ANGLE_MAX), // @Param: RC_FEEL_RP // @DisplayName: RC Feel Roll/Pitch // @Description: RC feel for roll/pitch which controls vehicle response to user input with 0 being extremely soft and 100 being crisp // @Range: 0 100 // @Increment: 10 // @User: Standard // @Values: 0:Very Soft, 25:Soft, 50:Medium, 75:Crisp, 100:Very Crisp GSCALAR(rc_feel_rp, "RC_FEEL_RP", RC_FEEL_RP_MEDIUM), // @Param: FS_EKF_ACTION // @DisplayName: EKF Failsafe Action // @Description: Controls the action that will be taken when an EKF failsafe is invoked // @Values: 0:Disabled, 1:Warn only, 2:Disarm // @User: Advanced GSCALAR(fs_ekf_action, "FS_EKF_ACTION", FS_EKF_ACTION_DEFAULT), // @Param: FS_EKF_THRESH // @DisplayName: EKF failsafe variance threshold // @Description: Allows setting the maximum acceptable compass and velocity variance // @Values: 0.6:Strict, 0.8:Default, 1.0:Relaxed // @User: Advanced GSCALAR(fs_ekf_thresh, "FS_EKF_THRESH", FS_EKF_THRESHOLD_DEFAULT), // @Param: FS_CRASH_CHECK // @DisplayName: Crash check enable // @Description: This enables automatic crash checking. When enabled the motors will disarm if a crash is detected. // @Values: 0:Disabled,1:Warn only,2:Disarm // @User: Advanced GSCALAR(fs_crash_check, "FS_CRASH_CHECK", FS_CRASH_DISABLED), // @Param: JS_GAIN_DEFAULT // @DisplayName: Default gain at boot // @Description: Default gain at boot, must be in range [JS_GAIN_MIN , JS_GAIN_MAX] // @User: Standard // @Range: 0.1 1.0 GSCALAR(gain_default, "JS_GAIN_DEFAULT", 0.5), // @Param: JS_GAIN_MAX // @DisplayName: Maximum joystick gain // @Description: Maximum joystick gain // @User: Standard // @Range: 0.2 1.0 GSCALAR(maxGain, "JS_GAIN_MAX", 1.0), // @Param: JS_GAIN_MIN // @DisplayName: Minimum joystick gain // @Description: Minimum joystick gain // @User: Standard // @Range: 0.1 0.8 GSCALAR(minGain, "JS_GAIN_MIN", 0.25), // @Param: JS_GAIN_STEPS // @DisplayName: Gain steps // @Description: Controls the number of steps between minimum and maximum joystick gain when the gain is adjusted using buttons. Set to 1 to always use JS_GAIN_DEFAULT. // @User: Standard // @Range: 1 10 GSCALAR(numGainSettings, "JS_GAIN_STEPS", 4), // @Param: JS_LIGHTS_STEP // @DisplayName: Lights step size // @Description: Size of PWM increment on lights servo // @User: Standard // @Range: 30 400 GSCALAR(lights_step, "JS_LIGHTS_STEP", 100), // @Param: JS_THR_GAIN // @DisplayName: Throttle gain scalar // @Description: Scalar for gain on the throttle channel // @User: Standard // @Range: 0.5 4.0 GSCALAR(throttle_gain, "JS_THR_GAIN", 1.0f), // @Param: FRAME_CONFIG // @DisplayName: Frame configuration // @Description: Set this parameter according to your vehicle/motor configuration // @User: Standard // @RebootRequired: True // @Values: 0:BlueROV1, 1:Vectored, 2:Vectored_6DOF, 3:Vectored_6DOF_90, 4:SimpleROV-3, 5:SimpleROV-4, 6:SimpleROV-5, 7:Custom GSCALAR(frame_configuration, "FRAME_CONFIG", AP_Motors6DOF::SUB_FRAME_VECTORED), // @Group: BTN0_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_0, "BTN0_", JSButton), // @Group: BTN1_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_1, "BTN1_", JSButton), // @Group: BTN2_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_2, "BTN2_", JSButton), // @Group: BTN3_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_3, "BTN3_", JSButton), // @Group: BTN4_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_4, "BTN4_", JSButton), // @Group: BTN5_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_5, "BTN5_", JSButton), // @Group: BTN6_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_6, "BTN6_", JSButton), // @Group: BTN7_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_7, "BTN7_", JSButton), // @Group: BTN8_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_8, "BTN8_", JSButton), // @Group: BTN9_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_9, "BTN9_", JSButton), // @Group: BTN10_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_10, "BTN10_", JSButton), // @Group: BTN11_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_11, "BTN11_", JSButton), // @Group: BTN12_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_12, "BTN12_", JSButton), // @Group: BTN13_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_13, "BTN13_", JSButton), // @Group: BTN14_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_14, "BTN14_", JSButton), // @Group: BTN15_ // @Path: ../libraries/AP_JSButton/AP_JSButton.cpp GGROUP(jbtn_15, "BTN15_", JSButton), // @Param: RC_SPEED // @DisplayName: ESC Update Speed // @Description: This is the speed in Hertz that your ESCs will receive updates // @Units: Hz // @Range: 50 490 // @Increment: 1 // @User: Advanced GSCALAR(rc_speed, "RC_SPEED", RC_SPEED_DEFAULT), // @Param: ACRO_RP_P // @DisplayName: Acro Roll and Pitch P gain // @Description: Converts pilot roll and pitch into a desired rate of rotation in ACRO and SPORT mode. Higher values mean faster rate of rotation. // @Range: 1 10 // @User: Standard GSCALAR(acro_rp_p, "ACRO_RP_P", ACRO_RP_P), // @Param: ACRO_YAW_P // @DisplayName: Acro Yaw P gain // @Description: Converts pilot yaw input into a desired rate of rotation. Higher values mean faster rate of rotation. // @Range: 1 10 // @User: Standard GSCALAR(acro_yaw_p, "ACRO_YAW_P", ACRO_YAW_P), // @Param: ACRO_BAL_ROLL // @DisplayName: Acro Balance Roll // @Description: rate at which roll angle returns to level in acro mode. A higher value causes the vehicle to return to level faster. // @Range: 0 3 // @Increment: 0.1 // @User: Advanced GSCALAR(acro_balance_roll, "ACRO_BAL_ROLL", ACRO_BALANCE_ROLL), // @Param: ACRO_BAL_PITCH // @DisplayName: Acro Balance Pitch // @Description: rate at which pitch angle returns to level in acro mode. A higher value causes the vehicle to return to level faster. // @Range: 0 3 // @Increment: 0.1 // @User: Advanced GSCALAR(acro_balance_pitch, "ACRO_BAL_PITCH", ACRO_BALANCE_PITCH), // @Param: ACRO_TRAINER // @DisplayName: Acro Trainer // @Description: Type of trainer used in acro mode // @Values: 0:Disabled,1:Leveling,2:Leveling and Limited // @User: Advanced GSCALAR(acro_trainer, "ACRO_TRAINER", ACRO_TRAINER_LIMITED), // @Param: ACRO_EXPO // @DisplayName: Acro Expo // @Description: Acro roll/pitch Expo to allow faster rotation when stick at edges // @Values: 0:Disabled,0.1:Very Low,0.2:Low,0.3:Medium,0.4:High,0.5:Very High // @User: Advanced GSCALAR(acro_expo, "ACRO_EXPO", ACRO_EXPO_DEFAULT), // @Param: VEL_XY_P // @DisplayName: Velocity (horizontal) P gain // @Description: Velocity (horizontal) P gain. Converts the difference between desired velocity to a target acceleration // @Range: 0.1 6.0 // @Increment: 0.1 // @User: Advanced // @Param: VEL_XY_I // @DisplayName: Velocity (horizontal) I gain // @Description: Velocity (horizontal) I gain. Corrects long-term difference in desired velocity to a target acceleration // @Range: 0.02 1.00 // @Increment: 0.01 // @User: Advanced // @Param: VEL_XY_IMAX // @DisplayName: Velocity (horizontal) integrator maximum // @Description: Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output // @Range: 0 4500 // @Increment: 10 // @Units: cm/s/s // @User: Advanced // @Param: VEL_XY_FILT_HZ // @DisplayName: Velocity (horizontal) integrator maximum // @Description: Velocity (horizontal) integrator maximum. Constrains the target acceleration that the I gain will output // @Range: 0 4500 // @Increment: 10 // @Units: cm/s/s // @User: Advanced GGROUP(pi_vel_xy, "VEL_XY_", AC_PI_2D), // @Param: VEL_Z_P // @DisplayName: Velocity (vertical) P gain // @Description: Velocity (vertical) P gain. Converts the difference between desired vertical speed and actual speed into a desired acceleration that is passed to the throttle acceleration controller // @Range: 1.000 8.000 // @User: Standard GGROUP(p_vel_z, "VEL_Z_", AC_P), // @Param: ACCEL_Z_P // @DisplayName: Throttle acceleration controller P gain // @Description: Throttle acceleration controller P gain. Converts the difference between desired vertical acceleration and actual acceleration into a motor output // @Range: 0.500 1.500 // @Increment: 0.05 // @User: Standard // @Param: ACCEL_Z_I // @DisplayName: Throttle acceleration controller I gain // @Description: Throttle acceleration controller I gain. Corrects long-term difference in desired vertical acceleration and actual acceleration // @Range: 0.000 3.000 // @User: Standard // @Param: ACCEL_Z_IMAX // @DisplayName: Throttle acceleration controller I gain maximum // @Description: Throttle acceleration controller I gain maximum. Constrains the maximum pwm that the I term will generate // @Range: 0 1000 // @Units: Percent*10 // @User: Standard // @Param: ACCEL_Z_D // @DisplayName: Throttle acceleration controller D gain // @Description: Throttle acceleration controller D gain. Compensates for short-term change in desired vertical acceleration vs actual acceleration // @Range: 0.000 0.400 // @User: Standard // @Param: ACCEL_Z_FILT // @DisplayName: Throttle acceleration filter // @Description: Filter applied to acceleration to reduce noise. Lower values reduce noise but add delay. // @Range: 1.000 100.000 // @Units: Hz // @User: Standard GGROUP(pid_accel_z, "ACCEL_Z_", AC_PID), // @Param: POS_Z_P // @DisplayName: Position (vertical) controller P gain // @Description: Position (vertical) controller P gain. Converts the difference between the desired altitude and actual altitude into a climb or descent rate which is passed to the throttle rate controller // @Range: 1.000 3.000 // @User: Standard GGROUP(p_alt_hold, "POS_Z_", AC_P), // @Param: POS_XY_P // @DisplayName: Position (horizonal) controller P gain // @Description: Loiter position controller P gain. Converts the distance (in the latitude direction) to the target location into a desired speed which is then passed to the loiter latitude rate controller // @Range: 0.500 2.000 // @User: Standard GGROUP(p_pos_xy, "POS_XY_", AC_P), // variables not in the g class which contain EEPROM saved variables #if CAMERA == ENABLED // @Group: CAM_ // @Path: ../libraries/AP_Camera/AP_Camera.cpp GOBJECT(camera, "CAM_", AP_Camera), #endif // @Group: RELAY_ // @Path: ../libraries/AP_Relay/AP_Relay.cpp GOBJECT(relay, "RELAY_", AP_Relay), // @Group: COMPASS_ // @Path: ../libraries/AP_Compass/AP_Compass.cpp GOBJECT(compass, "COMPASS_", Compass), // @Group: INS_ // @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp GOBJECT(ins, "INS_", AP_InertialSensor), // @Group: WPNAV_ // @Path: ../libraries/AC_WPNav/AC_WPNav.cpp GOBJECT(wp_nav, "WPNAV_", AC_WPNav), #if CIRCLE_NAV_ENABLED == ENABLED // @Group: CIRCLE_ // @Path: ../libraries/AC_WPNav/AC_Circle.cpp GOBJECT(circle_nav, "CIRCLE_", AC_Circle), #endif // @Group: ATC_ // @Path: ../libraries/AC_AttitudeControl/AC_AttitudeControl.cpp,../libraries/AC_AttitudeControl/AC_AttitudeControl_Sub.cpp GOBJECT(attitude_control, "ATC_", AC_AttitudeControl_Sub), // @Group: PSC // @Path: ../libraries/AC_AttitudeControl/AC_PosControl.cpp GOBJECT(pos_control, "PSC", AC_PosControl), // @Group: SR0_ // @Path: GCS_Mavlink.cpp GOBJECTN(gcs_chan[0], gcs0, "SR0_", GCS_MAVLINK), // @Group: SR1_ // @Path: GCS_Mavlink.cpp GOBJECTN(gcs_chan[1], gcs1, "SR1_", GCS_MAVLINK), // @Group: SR2_ // @Path: GCS_Mavlink.cpp GOBJECTN(gcs_chan[2], gcs2, "SR2_", GCS_MAVLINK), // @Group: SR3_ // @Path: GCS_Mavlink.cpp GOBJECTN(gcs_chan[3], gcs3, "SR3_", GCS_MAVLINK), // @Group: AHRS_ // @Path: ../libraries/AP_AHRS/AP_AHRS.cpp GOBJECT(ahrs, "AHRS_", AP_AHRS), #if MOUNT == ENABLED // @Group: MNT // @Path: ../libraries/AP_Mount/AP_Mount.cpp GOBJECT(camera_mount, "MNT", AP_Mount), #endif // @Group: LOG // @Path: ../libraries/DataFlash/DataFlash.cpp GOBJECT(DataFlash, "LOG", DataFlash_Class), // @Group: BATT // @Path: ../libraries/AP_BattMonitor/AP_BattMonitor.cpp GOBJECT(battery, "BATT", AP_BattMonitor), // @Group: ARMING_ // @Path: AP_Arming_Sub.cpp,../libraries/AP_Arming/AP_Arming.cpp GOBJECT(arming, "ARMING_", AP_Arming_Sub), // @Group: BRD_ // @Path: ../libraries/AP_BoardConfig/AP_BoardConfig.cpp GOBJECT(BoardConfig, "BRD_", AP_BoardConfig), #if CONFIG_HAL_BOARD == HAL_BOARD_SITL GOBJECT(sitl, "SIM_", SITL::SITL), #endif // @Group: GND_ // @Path: ../libraries/AP_Baro/AP_Baro.cpp GOBJECT(barometer, "GND_", AP_Baro), // GPS driver // @Group: GPS_ // @Path: ../libraries/AP_GPS/AP_GPS.cpp GOBJECT(gps, "GPS_", AP_GPS), // Leak detector // @Group: LEAK // @Path: ../libraries/AP_LeakDetector/AP_LeakDetector.cpp GOBJECT(leak_detector, "LEAK", AP_LeakDetector), // @Group: SCHED_ // @Path: ../libraries/AP_Scheduler/AP_Scheduler.cpp GOBJECT(scheduler, "SCHED_", AP_Scheduler), #if AC_FENCE == ENABLED // @Group: FENCE_ // @Path: ../libraries/AC_Fence/AC_Fence.cpp GOBJECT(fence, "FENCE_", AC_Fence), #endif #if AVOIDANCE_ENABLED == ENABLED // @Group: AVOID_ // @Path: ../libraries/AC_Avoidance/AC_Avoid.cpp GOBJECT(avoid, "AVOID_", AC_Avoid), #endif #if AC_RALLY == ENABLED // @Group: RALLY_ // @Path: ../libraries/AP_Rally/AP_Rally.cpp GOBJECT(rally, "RALLY_", AP_Rally), #endif // @Group: MOT_ // @Path: ../libraries/AP_Motors/AP_Motors6DOF.cpp,../libraries/AP_Motors/AP_MotorsMulticopter.cpp GOBJECT(motors, "MOT_", AP_Motors6DOF), #if RCMAP_ENABLED == ENABLED // @Group: RCMAP_ // @Path: ../libraries/AP_RCMapper/AP_RCMapper.cpp GOBJECT(rcmap, "RCMAP_", RCMapper), #endif // @Group: EK2_ // @Path: ../libraries/AP_NavEKF2/AP_NavEKF2.cpp GOBJECTN(EKF2, NavEKF2, "EK2_", NavEKF2), // @Group: EK3_ // @Path: ../libraries/AP_NavEKF3/AP_NavEKF3.cpp GOBJECTN(EKF3, NavEKF3, "EK3_", NavEKF3), // @Group: MIS_ // @Path: ../libraries/AP_Mission/AP_Mission.cpp GOBJECT(mission, "MIS_", AP_Mission), #if RANGEFINDER_ENABLED == ENABLED // @Group: RNGFND // @Path: ../libraries/AP_RangeFinder/RangeFinder.cpp GOBJECT(rangefinder, "RNGFND", RangeFinder), #endif #if AP_TERRAIN_AVAILABLE && AC_TERRAIN // @Group: TERRAIN_ // @Path: ../libraries/AP_Terrain/AP_Terrain.cpp GOBJECT(terrain, "TERRAIN_", AP_Terrain), #endif #if OPTFLOW == ENABLED // @Group: FLOW // @Path: ../libraries/AP_OpticalFlow/OpticalFlow.cpp GOBJECT(optflow, "FLOW", OpticalFlow), #endif #if RPM_ENABLED == ENABLED // @Group: RPM // @Path: ../libraries/AP_RPM/AP_RPM.cpp GOBJECT(rpm_sensor, "RPM", AP_RPM), #endif // @Group: NTF_ // @Path: ../libraries/AP_Notify/AP_Notify.cpp GOBJECT(notify, "NTF_", AP_Notify), // @Param: TERRAIN_FOLLOW // @DisplayName: Terrain Following use control // @Description: This enables terrain following for RTL and SURFACE flight modes. To use this option TERRAIN_ENABLE must be 1 and the GCS must support sending terrain data to the aircraft. In RTL the RTL_ALT will be considered a height above the terrain. In LAND mode the vehicle will slow to LAND_SPEED 10m above terrain (instead of 10m above home). This parameter does not affect AUTO and Guided which use a per-command flag to determine if the height is above-home, absolute or above-terrain. // @Values: 0:Do Not Use in RTL and SURFACE,1:Use in RTL and SURFACE // @User: Standard GSCALAR(terrain_follow, "TERRAIN_FOLLOW", 0), // @Group: // @Path: Parameters.cpp GOBJECT(g2, "", ParametersG2), AP_VAREND }; /* 2nd group of parameters */ const AP_Param::GroupInfo ParametersG2::var_info[] = { #if PROXIMITY_ENABLED == ENABLED // @Group: PRX // @Path: ../libraries/AP_Proximity/AP_Proximity.cpp AP_SUBGROUPINFO(proximity, "PRX", 2, ParametersG2, AP_Proximity), #endif #if GRIPPER_ENABLED == ENABLED // @Group: GRIP_ // @Path: ../libraries/AP_Gripper/AP_Gripper.cpp AP_SUBGROUPINFO(gripper, "GRIP_", 3, ParametersG2, AP_Gripper), #endif // @Group: SERVO // @Path: ../libraries/SRV_Channel/SRV_Channels.cpp AP_SUBGROUPINFO(servo_channels, "SERVO", 16, ParametersG2, SRV_Channels), // @Group: RC // @Path: ../libraries/RC_Channel/RC_Channels.cpp AP_SUBGROUPINFO(rc_channels, "RC", 17, ParametersG2, RC_Channels), AP_GROUPEND }; /* constructor for g2 object */ ParametersG2::ParametersG2(void) #if PROXIMITY_ENABLED == ENABLED : proximity(sub.serial_manager) #endif { AP_Param::setup_object_defaults(this, var_info); } void Sub::load_parameters(void) { if (!AP_Param::check_var_info()) { hal.console->printf("Bad var table\n"); AP_HAL::panic("Bad var table"); } // disable centrifugal force correction, it will be enabled as part of the arming process ahrs.set_correct_centrifugal(false); hal.util->set_soft_armed(false); if (!g.format_version.load() || g.format_version != Parameters::k_format_version) { // erase all parameters hal.console->printf("Firmware change: erasing EEPROM...\n"); AP_Param::erase_all(); // save the current format version g.format_version.set_and_save(Parameters::k_format_version); hal.console->println("done."); } uint32_t before = micros(); // Load all auto-loaded EEPROM variables AP_Param::load_all(); hal.console->printf("load_all took %uus\n", (unsigned)(micros() - before)); AP_Param::set_frame_type_flags(AP_PARAM_FRAME_SUB); convert_old_parameters(); AP_Param::set_default_by_name("BRD_SAFETYENABLE", 0); AP_Param::set_default_by_name("ARMING_CHECK", AP_Arming::ARMING_CHECK_RC | AP_Arming::ARMING_CHECK_VOLTAGE | AP_Arming::ARMING_CHECK_BATTERY); AP_Param::set_default_by_name("CIRCLE_RATE", 2.0f); AP_Param::set_default_by_name("ATC_ACCEL_Y_MAX", 110000.0f); AP_Param::set_default_by_name("RC3_TRIM", 1100); AP_Param::set_default_by_name("COMPASS_OFFS_MAX", 1000); AP_Param::set_default_by_name("INS_GYR_CAL", 0); AP_Param::set_default_by_name("MNT_DEFLT_MODE", MAV_MOUNT_MODE_RC_TARGETING); AP_Param::set_default_by_name("MNT_JSTICK_SPD", 100); } void Sub::convert_old_parameters(void) { const uint8_t old_rc_keys[14] = { Parameters::k_param_rc_1_old, Parameters::k_param_rc_2_old, Parameters::k_param_rc_3_old, Parameters::k_param_rc_4_old, Parameters::k_param_rc_5_old, Parameters::k_param_rc_6_old, Parameters::k_param_rc_7_old, Parameters::k_param_rc_8_old, Parameters::k_param_rc_9_old, Parameters::k_param_rc_10_old, Parameters::k_param_rc_11_old, Parameters::k_param_rc_12_old, Parameters::k_param_rc_13_old, Parameters::k_param_rc_14_old }; const uint16_t old_aux_chan_mask = 0x3FF0; // note that we don't pass in rcmap as we don't want output channel functions changed based on rcmap SRV_Channels::upgrade_parameters(old_rc_keys, old_aux_chan_mask, nullptr); }