/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
simple electric motor simulator class
*/
#include "SIM_Motor.h"
#include
using namespace SITL;
// calculate rotational accel and thrust for a motor
void Motor::calculate_forces(const Aircraft::sitl_input &input,
const float thrust_scale,
uint8_t motor_offset,
Vector3f &rot_accel,
Vector3f &thrust) const
{
// fudge factors
const float arm_scale = radians(5000);
const float yaw_scale = radians(400);
// get motor speed from 0 to 1
float motor_speed = constrain_float((input.servos[motor_offset+servo]-1100)/900.0, 0, 1);
// the yaw torque of the motor
Vector3f rotor_torque(0, 0, yaw_factor * motor_speed * yaw_scale);
// get thrust for untilted motor
thrust(0, 0, -motor_speed);
// define the arm position relative to center of mass
Vector3f arm(arm_scale * cosf(radians(angle)), arm_scale * sinf(radians(angle)), 0);
// work out roll and pitch of motor relative to it pointing straight up
float roll = 0, pitch = 0;
// possibly roll and/or pitch the motor
if (roll_servo >= 0) {
uint16_t servoval = input.servos[roll_servo+motor_offset];
if (roll_min < roll_max) {
roll = constrain_float(roll_min + (servoval-1000)*0.001*(roll_max-roll_min), roll_min, roll_max);
} else {
roll = constrain_float(roll_max + (2000-servoval)*0.001*(roll_min-roll_max), roll_max, roll_min);
}
}
if (pitch_servo >= 0) {
uint16_t servoval = input.servos[pitch_servo+motor_offset];
if (pitch_min < pitch_max) {
pitch = constrain_float(pitch_min + (servoval-1000)*0.001*(pitch_max-pitch_min), pitch_min, pitch_max);
} else {
pitch = constrain_float(pitch_max + (2000-servoval)*0.001*(pitch_min-pitch_max), pitch_max, pitch_min);
}
}
// possibly rotate the thrust vector and the rotor torque
if (!is_zero(roll) || !is_zero(pitch)) {
Matrix3f rotation;
rotation.from_euler(radians(roll), radians(pitch), 0);
thrust = rotation * thrust;
rotor_torque = rotation * rotor_torque;
}
// calculate total rotational acceleration
rot_accel = (arm % thrust) + rotor_torque;
// scale the thrust
thrust = thrust * thrust_scale;
}