#include #include "AC_Fence.h" #include #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AC_Fence::var_info[] = { // @Param: ENABLE // @DisplayName: Fence enable/disable // @Description: Allows you to enable (1) or disable (0) the fence functionality // @Values: 0:Disabled,1:Enabled // @User: Standard AP_GROUPINFO("ENABLE", 0, AC_Fence, _enabled, 0), // @Param: TYPE // @DisplayName: Fence Type // @Description: Enabled fence types held as bitmask // @Values: 0:None,1:Altitude,2:Circle,3:Altitude and Circle,4:Polygon,5:Altitude and Polygon,6:Circle and Polygon,7:All // @Bitmask: 0:Altitude,1:Circle,2:Polygon // @User: Standard AP_GROUPINFO("TYPE", 1, AC_Fence, _enabled_fences, AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON), // @Param: ACTION // @DisplayName: Fence Action // @Description: What action should be taken when fence is breached // @Values: 0:Report Only,1:RTL or Land // @User: Standard AP_GROUPINFO("ACTION", 2, AC_Fence, _action, AC_FENCE_ACTION_RTL_AND_LAND), // @Param: ALT_MAX // @DisplayName: Fence Maximum Altitude // @Description: Maximum altitude allowed before geofence triggers // @Units: m // @Range: 10 1000 // @Increment: 1 // @User: Standard AP_GROUPINFO("ALT_MAX", 3, AC_Fence, _alt_max, AC_FENCE_ALT_MAX_DEFAULT), // @Param: RADIUS // @DisplayName: Circular Fence Radius // @Description: Circle fence radius which when breached will cause an RTL // @Units: m // @Range: 30 10000 // @User: Standard AP_GROUPINFO("RADIUS", 4, AC_Fence, _circle_radius, AC_FENCE_CIRCLE_RADIUS_DEFAULT), // @Param: MARGIN // @DisplayName: Fence Margin // @Description: Distance that autopilot's should maintain from the fence to avoid a breach // @Units: m // @Range: 1 10 // @User: Standard AP_GROUPINFO("MARGIN", 5, AC_Fence, _margin, AC_FENCE_MARGIN_DEFAULT), // @Param: TOTAL // @DisplayName: Fence polygon point total // @Description: Number of polygon points saved in eeprom (do not update manually) // @Range: 1 20 // @User: Standard AP_GROUPINFO("TOTAL", 6, AC_Fence, _total, 0), // @Param: ALT_MIN // @DisplayName: Fence Minimum Altitude // @Description: Minimum altitude allowed before geofence triggers // @Units: m // @Range: -100 100 // @Increment: 1 // @User: Standard AP_GROUPINFO_FRAME("ALT_MIN", 7, AC_Fence, _alt_min, AC_FENCE_ALT_MIN_DEFAULT, AP_PARAM_FRAME_SUB), AP_GROUPEND }; /// Default constructor. AC_Fence::AC_Fence(const AP_AHRS_NavEKF& ahrs) : _ahrs(ahrs), _alt_max_backup(0), _circle_radius_backup(0), _alt_max_breach_distance(0), _circle_breach_distance(0), _home_distance(0), _breached_fences(AC_FENCE_TYPE_NONE), _breach_time(0), _breach_count(0), _manual_recovery_start_ms(0) { AP_Param::setup_object_defaults(this, var_info); // check for silly fence values if (_alt_max < 0.0f) { _alt_max.set_and_save(AC_FENCE_ALT_MAX_DEFAULT); } if (_circle_radius < 0) { _circle_radius.set_and_save(AC_FENCE_CIRCLE_RADIUS_DEFAULT); } } void AC_Fence::enable(bool value) { _enabled = value; if (!value) { clear_breach(AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE | AC_FENCE_TYPE_POLYGON); } } /// get_enabled_fences - returns bitmask of enabled fences uint8_t AC_Fence::get_enabled_fences() const { if (!_enabled) { return AC_FENCE_TYPE_NONE; }else{ return _enabled_fences; } } /// pre_arm_check - returns true if all pre-takeoff checks have completed successfully bool AC_Fence::pre_arm_check(const char* &fail_msg) const { fail_msg = nullptr; // if not enabled or not fence set-up always return true if (!_enabled || _enabled_fences == AC_FENCE_TYPE_NONE) { return true; } // check no limits are currently breached if (_breached_fences != AC_FENCE_TYPE_NONE) { fail_msg = "vehicle outside fence"; return false; } // if we have horizontal limits enabled, check we can get a // relative position from the EKF if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) || (_enabled_fences & AC_FENCE_TYPE_POLYGON)) { Vector2f position; if (!_ahrs.get_relative_position_NE_origin(position)) { fail_msg = "fence requires position"; return false; } } // if we got this far everything must be ok return true; } /// check_fence - returns the fence type that has been breached (if any) /// curr_alt is the altitude above home in meters uint8_t AC_Fence::check_fence(float curr_alt) { uint8_t ret = AC_FENCE_TYPE_NONE; // return immediately if disabled if (!_enabled || _enabled_fences == AC_FENCE_TYPE_NONE) { return AC_FENCE_TYPE_NONE; } // check if pilot is attempting to recover manually if (_manual_recovery_start_ms != 0) { // we ignore any fence breaches during the manual recovery period which is about 10 seconds if ((AP_HAL::millis() - _manual_recovery_start_ms) < AC_FENCE_MANUAL_RECOVERY_TIME_MIN) { return AC_FENCE_TYPE_NONE; } else { // recovery period has passed so reset manual recovery time and continue with fence breach checks _manual_recovery_start_ms = 0; } } // altitude fence check if ((_enabled_fences & AC_FENCE_TYPE_ALT_MAX) != 0) { // check if we are over the altitude fence if( curr_alt >= _alt_max ) { // record distance above breach _alt_max_breach_distance = curr_alt - _alt_max; // check for a new breach or a breach of the backup fence if ((_breached_fences & AC_FENCE_TYPE_ALT_MAX) == 0 || (!is_zero(_alt_max_backup) && curr_alt >= _alt_max_backup)) { // record that we have breached the upper limit record_breach(AC_FENCE_TYPE_ALT_MAX); ret |= AC_FENCE_TYPE_ALT_MAX; // create a backup fence 20m higher up _alt_max_backup = curr_alt + AC_FENCE_ALT_MAX_BACKUP_DISTANCE; } }else{ // clear alt breach if present if ((_breached_fences & AC_FENCE_TYPE_ALT_MAX) != 0) { clear_breach(AC_FENCE_TYPE_ALT_MAX); _alt_max_backup = 0.0f; _alt_max_breach_distance = 0.0f; } } } // circle fence check if ((_enabled_fences & AC_FENCE_TYPE_CIRCLE) != 0 ) { // check if we are outside the fence if (_home_distance >= _circle_radius) { // record distance outside the fence _circle_breach_distance = _home_distance - _circle_radius; // check for a new breach or a breach of the backup fence if ((_breached_fences & AC_FENCE_TYPE_CIRCLE) == 0 || (!is_zero(_circle_radius_backup) && _home_distance >= _circle_radius_backup)) { // record that we have breached the circular distance limit record_breach(AC_FENCE_TYPE_CIRCLE); ret |= AC_FENCE_TYPE_CIRCLE; // create a backup fence 20m further out _circle_radius_backup = _home_distance + AC_FENCE_CIRCLE_RADIUS_BACKUP_DISTANCE; } }else{ // clear circle breach if present if ((_breached_fences & AC_FENCE_TYPE_CIRCLE) != 0) { clear_breach(AC_FENCE_TYPE_CIRCLE); _circle_radius_backup = 0.0f; _circle_breach_distance = 0.0f; } } } // polygon fence check if ((_enabled_fences & AC_FENCE_TYPE_POLYGON) != 0 ) { // check consistency of number of points if (_boundary_num_points != _total) { _boundary_loaded = false; } // load fence if necessary if (!_boundary_loaded) { load_polygon_from_eeprom(); } else if (_boundary_valid) { // check if vehicle is outside the polygon fence Vector2f position; if (_ahrs.get_relative_position_NE_origin(position)) { // don't check polyfence in case of bad position position = position * 100.0f; // m to cm if (_poly_loader.boundary_breached(position, _boundary_num_points, _boundary, true)) { // check if this is a new breach if ((_breached_fences & AC_FENCE_TYPE_POLYGON) == 0) { // record that we have breached the polygon record_breach(AC_FENCE_TYPE_POLYGON); ret |= AC_FENCE_TYPE_POLYGON; } } else { // clear breach if present if ((_breached_fences & AC_FENCE_TYPE_POLYGON) != 0) { clear_breach(AC_FENCE_TYPE_POLYGON); } } } } } // return any new breaches that have occurred return ret; } // returns true if the destination is within fence (used to reject waypoints outside the fence) bool AC_Fence::check_destination_within_fence(const Location_Class& loc) { // Altitude fence check if ((get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX)) { int32_t alt_above_home_cm; if (loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, alt_above_home_cm)) { if ((alt_above_home_cm * 0.01f) > _alt_max) { return false; } } } // Circular fence check if ((get_enabled_fences() & AC_FENCE_TYPE_CIRCLE)) { if ((get_distance_cm(_ahrs.get_home(), loc) * 0.01f) > _circle_radius) { return false; } } // polygon fence check if ((get_enabled_fences() & AC_FENCE_TYPE_POLYGON) && _boundary_num_points > 0) { // check ekf has a good location Vector2f posNE; if (_ahrs.get_relative_position_NE_origin(posNE)) { posNE = posNE * 100.0f; // m to cm if (_poly_loader.boundary_breached(posNE, _boundary_num_points, _boundary, true)) { return false; } } } return true; } /// record_breach - update breach bitmask, time and count void AC_Fence::record_breach(uint8_t fence_type) { // if we haven't already breached a limit, update the breach time if (_breached_fences == AC_FENCE_TYPE_NONE) { _breach_time = AP_HAL::millis(); } // update breach count if (_breach_count < 65500) { _breach_count++; } // update bitmask _breached_fences |= fence_type; } /// clear_breach - update breach bitmask, time and count void AC_Fence::clear_breach(uint8_t fence_type) { // return immediately if this fence type was not breached if ((_breached_fences & fence_type) == 0) { return; } // update bitmask _breached_fences &= ~fence_type; } /// get_breach_distance - returns distance in meters outside of the given fence float AC_Fence::get_breach_distance(uint8_t fence_type) const { switch (fence_type) { case AC_FENCE_TYPE_ALT_MAX: return _alt_max_breach_distance; break; case AC_FENCE_TYPE_CIRCLE: return _circle_breach_distance; break; case AC_FENCE_TYPE_ALT_MAX | AC_FENCE_TYPE_CIRCLE: return MAX(_alt_max_breach_distance,_circle_breach_distance); } // we don't recognise the fence type so just return 0 return 0; } /// manual_recovery_start - caller indicates that pilot is re-taking manual control so fence should be disabled for 10 seconds /// has no effect if no breaches have occurred void AC_Fence::manual_recovery_start() { // return immediate if we haven't breached a fence if (_breached_fences == AC_FENCE_TYPE_NONE) { return; } // record time pilot began manual recovery _manual_recovery_start_ms = AP_HAL::millis(); } /// returns pointer to array of polygon points and num_points is filled in with the total number Vector2f* AC_Fence::get_polygon_points(uint16_t& num_points) const { num_points = _boundary_num_points; return _boundary; } /// returns true if we've breached the polygon boundary. simple passthrough to underlying _poly_loader object bool AC_Fence::boundary_breached(const Vector2f& location, uint16_t num_points, const Vector2f* points) const { return _poly_loader.boundary_breached(location, num_points, points, true); } /// handler for polygon fence messages with GCS void AC_Fence::handle_msg(GCS_MAVLINK &link, mavlink_message_t* msg) { // exit immediately if null message if (msg == nullptr) { return; } switch (msg->msgid) { // receive a fence point from GCS and store in EEPROM case MAVLINK_MSG_ID_FENCE_POINT: { mavlink_fence_point_t packet; mavlink_msg_fence_point_decode(msg, &packet); if (!check_latlng(packet.lat,packet.lng)) { link.send_text(MAV_SEVERITY_WARNING, "Invalid fence point, lat or lng too large"); } else { Vector2l point; point.x = packet.lat*1.0e7f; point.y = packet.lng*1.0e7f; if (!_poly_loader.save_point_to_eeprom(packet.idx, point)) { link.send_text(MAV_SEVERITY_WARNING, "Failed to save polygon point, too many points?"); } else { // trigger reload of points _boundary_loaded = false; } } break; } // send a fence point to GCS case MAVLINK_MSG_ID_FENCE_FETCH_POINT: { mavlink_fence_fetch_point_t packet; mavlink_msg_fence_fetch_point_decode(msg, &packet); // attempt to retrieve from eeprom Vector2l point; if (_poly_loader.load_point_from_eeprom(packet.idx, point)) { mavlink_msg_fence_point_send_buf(msg, link.get_chan(), msg->sysid, msg->compid, packet.idx, _total, point.x*1.0e-7f, point.y*1.0e-7f); } else { link.send_text(MAV_SEVERITY_WARNING, "Bad fence point"); } break; } default: // do nothing break; } } /// load polygon points stored in eeprom into boundary array and perform validation bool AC_Fence::load_polygon_from_eeprom(bool force_reload) { // exit immediately if already loaded if (_boundary_loaded && !force_reload) { return true; } // check if we need to create array if (!_boundary_create_attempted) { _boundary = (Vector2f *)_poly_loader.create_point_array(sizeof(Vector2f)); _boundary_create_attempted = true; } // exit if we could not allocate RAM for the boundary if (_boundary == nullptr) { return false; } // get current location from EKF Location temp_loc; if (!_ahrs.get_location(temp_loc)) { return false; } struct Location ekf_origin {}; _ahrs.get_origin(ekf_origin); // sanity check total _total = constrain_int16(_total, 0, _poly_loader.max_points()); // load each point from eeprom Vector2l temp_latlon; for (uint16_t index=0; index<_total; index++) { // load boundary point as lat/lon point _poly_loader.load_point_from_eeprom(index, temp_latlon); // move into location structure and convert to offset from ekf origin temp_loc.lat = temp_latlon.x; temp_loc.lng = temp_latlon.y; _boundary[index] = location_diff(ekf_origin, temp_loc) * 100.0f; } _boundary_num_points = _total; _boundary_loaded = true; // update validity of polygon _boundary_valid = _poly_loader.boundary_valid(_boundary_num_points, _boundary, true); return true; }