// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include "AC_AttitudeControl_Heli.h" #include extern const AP_HAL::HAL& hal; // table of user settable parameters const AP_Param::GroupInfo AC_AttitudeControl_Heli::var_info[] PROGMEM = { // @Param: RATE_RP_MAX // @DisplayName: Angle Rate Roll-Pitch max // @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes // @Units: Centi-Degrees/Sec // @Range: 90000 250000 // @Increment: 500 // @User: Advanced AP_GROUPINFO("RATE_RP_MAX", 0, AC_AttitudeControl_Heli, _angle_rate_rp_max, AC_ATTITUDE_CONTROL_RATE_RP_MAX_DEFAULT), // @Param: RATE_Y_MAX // @DisplayName: Angle Rate Yaw max // @Description: maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes // @Units: Centi-Degrees/Sec // @Range: 90000 250000 // @Increment: 500 // @User: Advanced AP_GROUPINFO("RATE_Y_MAX", 1, AC_AttitudeControl_Heli, _angle_rate_y_max, AC_ATTITUDE_CONTROL_RATE_Y_MAX_DEFAULT), // @Param: SLEW_YAW // @DisplayName: Yaw target slew rate // @Description: Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes // @Units: Centi-Degrees/Sec // @Range: 500 18000 // @Increment: 100 // @User: Advanced AP_GROUPINFO("SLEW_YAW", 2, AC_AttitudeControl_Heli, _slew_yaw, AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT), // @Param: ACCEL_RP_MAX // @DisplayName: Acceleration Max for Roll/Pitch // @Description: Maximum acceleration in roll/pitch axis // @Units: Centi-Degrees/Sec/Sec // @Range: 20000 100000 // @Increment: 100 // @User: Advanced AP_GROUPINFO("ACCEL_RP_MAX", 3, AC_AttitudeControl_Heli, _accel_rp_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT), // @Param: ACCEL_Y_MAX // @DisplayName: Acceleration Max for Yaw // @Description: Maximum acceleration in yaw axis // @Units: Centi-Degrees/Sec/Sec // @Range: 20000 100000 // @Increment: 100 // @User: Advanced AP_GROUPINFO("ACCEL_Y_MAX", 4, AC_AttitudeControl_Heli, _accel_y_max, AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT), // @Param: RATE_RLL_FF // @DisplayName: Rate Roll Feed Forward // @Description: Rate Roll Feed Forward (for TradHeli Only) // @Range: 0 10 // @Increment: 0.01 // @User: Standard AP_GROUPINFO("RATE_RLL_FF", 5, AC_AttitudeControl_Heli, _heli_roll_ff, AC_ATTITUDE_HELI_ROLL_FF), // @Param: RATE_PIT_FF // @DisplayName: Rate Pitch Feed Forward // @Description: Rate Pitch Feed Forward (for TradHeli Only) // @Range: 0 10 // @Increment: 0.01 // @User: Standard AP_GROUPINFO("RATE_PIT_FF", 6, AC_AttitudeControl_Heli, _heli_pitch_ff, AC_ATTITUDE_HELI_ROLL_FF), // @Param: RATE_YAW_FF // @DisplayName: Rate Yaw Feed Forward // @Description: Rate Yaw Feed Forward (for TradHeli Only) // @Range: 0 10 // @Increment: 0.01 // @User: Standard AP_GROUPINFO("RATE_YAW_FF", 7, AC_AttitudeControl_Heli, _heli_yaw_ff, AC_ATTITUDE_HELI_YAW_FF), AP_GROUPEND }; // // rate controller (body-frame) methods // // rate_controller_run - run lowest level rate controller and send outputs to the motors // should be called at 100hz or more void AC_AttitudeControl_Heli::rate_controller_run() { // call rate controllers and send output to motors object // To-Do: should the outputs from get_rate_roll, pitch, yaw be int16_t which is the input to the motors library? // To-Do: skip this step if the throttle out is zero? rate_bf_to_motor_roll_pitch(_rate_bf_target.x, _rate_bf_target.y); _motors.set_yaw(rate_bf_to_motor_yaw(_rate_bf_target.z)); } // // private methods // // // body-frame rate controller // // rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second void AC_AttitudeControl_Heli::rate_bf_to_motor_roll_pitch(float rate_roll_target_cds, float rate_pitch_target_cds) { float roll_pd, roll_i; // used to capture pid values float pitch_pd, pitch_i; // used to capture pid values float rate_roll_error, rate_pitch_error; // simply target_rate - current_rate float roll_out, pitch_out; const Vector3f& gyro = _ins.get_gyro(); // get current rates // calculate error rate_roll_error = rate_roll_target_cds - gyro.x * AC_ATTITUDE_CONTROL_DEGX100; rate_pitch_error = rate_pitch_target_cds - gyro.y * AC_ATTITUDE_CONTROL_DEGX100; // call p and d controllers roll_pd = _pid_rate_roll.get_p(rate_roll_error) + _pid_rate_roll.get_d(rate_roll_error, _dt); pitch_pd = _pid_rate_pitch.get_p(rate_pitch_error) + _pid_rate_pitch.get_d(rate_pitch_error, _dt); // get roll i term roll_i = _pid_rate_roll.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!_flags_heli.limit_roll || ((roll_i>0&&rate_roll_error<0)||(roll_i<0&&rate_roll_error>0))){ if (((AP_MotorsHeli&)_motors).has_flybar()) { // Mechanical Flybars get regular integral for rate auto trim if (rate_roll_target_cds > -50 && rate_roll_target_cds < 50){ // Frozen at high rates roll_i = _pid_rate_roll.get_i(rate_roll_error, _dt); } }else{ if (_flags_heli.leaky_i){ roll_i = _pid_rate_roll.get_leaky_i(rate_roll_error, _dt, AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); }else{ roll_i = _pid_rate_roll.get_i(rate_roll_error, _dt); } } } // get pitch i term pitch_i = _pid_rate_pitch.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!_flags_heli.limit_pitch || ((pitch_i>0&&rate_pitch_error<0)||(pitch_i<0&&rate_pitch_error>0))){ if (((AP_MotorsHeli&)_motors).has_flybar()) { // Mechanical Flybars get regular integral for rate auto trim if (rate_pitch_target_cds > -50 && rate_pitch_target_cds < 50){ // Frozen at high rates pitch_i = _pid_rate_pitch.get_i(rate_pitch_error, _dt); } }else{ if (_flags_heli.leaky_i) { pitch_i = _pid_rate_pitch.get_leaky_i(rate_pitch_error, _dt, AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); }else{ pitch_i = _pid_rate_pitch.get_i(rate_pitch_error, _dt); } } } // add feed forward and final output roll_out = (_heli_roll_ff * rate_roll_target_cds) + roll_pd + roll_i; pitch_out = (_heli_pitch_ff * rate_pitch_target_cds) + pitch_pd + pitch_i; // constrain output and update limit flags if (fabs(roll_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { roll_out = constrain_float(roll_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); _flags_heli.limit_roll = true; }else{ _flags_heli.limit_roll = false; } if (fabs(pitch_out) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX) { pitch_out = constrain_float(pitch_out,-AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX); _flags_heli.limit_pitch = true; }else{ _flags_heli.limit_pitch = false; } // output to motors _motors.set_roll(roll_out); _motors.set_pitch(pitch_out); /* #if HELI_CC_COMP == ENABLED static LowPassFilterFloat rate_dynamics_filter; // Rate Dynamics filter #endif #if HELI_CC_COMP == ENABLED rate_dynamics_filter.set_cutoff_frequency(0.01f, 4.0f); #endif #if AC_ATTITUDE_HELI_CC_COMP == ENABLED // Do cross-coupling compensation for low rpm helis // Credit: Jolyon Saunders // Note: This is not widely tested at this time. Will not be used by default yet. float cc_axis_ratio = 2.0f; // Ratio of compensation on pitch vs roll axes. Number >1 means pitch is affected more than roll float cc_kp = 0.0002f; // Compensation p term. Setting this to zero gives h_phang only, while increasing it will increase the p term of correction float cc_kd = 0.127f; // Compensation d term, scaled. This accounts for flexing of the blades, dampers etc. Originally was (motors.ext_gyro_gain * 0.0001) float cc_angle, cc_total_output; uint32_t cc_roll_d, cc_pitch_d, cc_sum_d; int32_t cc_scaled_roll; int32_t cc_roll_output; // Used to temporarily hold output while rotation is being calculated int32_t cc_pitch_output; // Used to temporarily hold output while rotation is being calculated static int32_t last_roll_output = 0; static int32_t last_pitch_output = 0; cc_scaled_roll = roll_output / cc_axis_ratio; // apply axis ratio to roll cc_total_output = safe_sqrt(cc_scaled_roll * cc_scaled_roll + pitch_output * pitch_output) * cc_kp; // find the delta component cc_roll_d = (roll_output - last_roll_output) / cc_axis_ratio; cc_pitch_d = pitch_output - last_pitch_output; cc_sum_d = safe_sqrt(cc_roll_d * cc_roll_d + cc_pitch_d * cc_pitch_d); // do the magic. cc_angle = cc_kd * cc_sum_d * cc_total_output - cc_total_output * motors.get_phase_angle(); // smooth angle variations, apply constraints cc_angle = rate_dynamics_filter.apply(cc_angle); cc_angle = constrain_float(cc_angle, -90.0f, 0.0f); cc_angle = radians(cc_angle); // Make swash rate vector Vector2f swashratevector; swashratevector.x = cosf(cc_angle); swashratevector.y = sinf(cc_angle); swashratevector.normalize(); // rotate the output cc_roll_output = roll_output; cc_pitch_output = pitch_output; roll_output = - (cc_pitch_output * swashratevector.y - cc_roll_output * swashratevector.x); pitch_output = cc_pitch_output * swashratevector.x + cc_roll_output * swashratevector.y; // make current outputs old, for next iteration last_roll_output = cc_roll_output; last_pitch_output = cc_pitch_output; # endif // HELI_CC_COMP #if AC_ATTITUDE_HELI_PIRO_COMP == ENABLED if (control_mode <= ACRO){ int32_t piro_roll_i, piro_pitch_i; // used to hold i term while doing prio comp piro_roll_i = roll_i; piro_pitch_i = pitch_i; Vector2f yawratevector; yawratevector.x = cos(-omega.z/100); yawratevector.y = sin(-omega.z/100); yawratevector.normalize(); roll_i = piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y; pitch_i = piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y; g.pid_rate_pitch.set_integrator(pitch_i); g.pid_rate_roll.set_integrator(roll_i); } #endif //HELI_PIRO_COMP */ } // rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in centi-degrees / second float AC_AttitudeControl_Heli::rate_bf_to_motor_yaw(float rate_target_cds) { float pd,i; // used to capture pid values for logging float current_rate; // this iteration's rate float rate_error; // simply target_rate - current_rate float yaw_out; // get current rate // To-Do: make getting gyro rates more efficient? current_rate = (_ins.get_gyro().z * AC_ATTITUDE_CONTROL_DEGX100); // calculate error and call pid controller rate_error = rate_target_cds - current_rate; pd = _pid_rate_yaw.get_p(rate_error) + _pid_rate_yaw.get_d(rate_error, _dt); // get i term i = _pid_rate_yaw.get_integrator(); // update i term as long as we haven't breached the limits or the I term will certainly reduce if (!_flags_heli.limit_yaw || ((i>0&&rate_error<0)||(i<0&&rate_error>0))) { if (((AP_MotorsHeli&)_motors).motor_runup_complete()) { i = _pid_rate_yaw.get_i(rate_error, _dt); } else { i = _pid_rate_yaw.get_leaky_i(rate_error, _dt, AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE); // If motor is not running use leaky I-term to avoid excessive build-up } } // add feed forward yaw_out = (_heli_yaw_ff*rate_target_cds) + pd + i; // constrain output and update limit flag if (fabs(yaw_out) > AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX) { yaw_out = constrain_float(yaw_out,-AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX,AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX); _flags_heli.limit_yaw = true; }else{ _flags_heli.limit_yaw = false; } // output to motors return yaw_out; } // // throttle functions // // get_angle_boost - returns a throttle including compensation for roll/pitch angle // throttle value should be 0 ~ 1000 int16_t AC_AttitudeControl_Heli::get_angle_boost(int16_t throttle_pwm) { // no angle boost for trad helis _angle_boost = 0; return throttle_pwm; }